计算机网络波动大,电脑网络连接不稳定这么解决

原标题:电脑网络连接不稳定这么解决

有时候经常会遇到网络时不时的不稳定掉线,网络不稳定应该这么解决呢?根据这么的经验分享两种方法仅供大家参考

一、 检查电脑 win10是按住win+R键 打开运行

在运行输入框里面输入 cmd 如图所示:

f041e2eebf46b9e46fd8bae9be447910.png

二、点击确定会出现命令提示框(就是一个黑色的小框)如图所示 输入 ping 127.0.0.1

d4aa81fb57d8905c8d332c2d113ae23d.png

三、 按下回车键(ENTER)如果出现下图所示的数据 就是能ping通 网络协议没有问题的

824d2b39d4cc2868a2aed2e9067d5c03.png

第二种解决方法 修改internet的协议设置

以win10为例:点击更改网络设置如下图

81ab8531289999ef664a756e8a0ff4e5.png

点击修改设置就会出现本地连接页面如下图 点击右键WLAN小电脑的属性

dbb6b7d5b5cce69f0207eebff7ea6df2.png

596cb44a039edcd052e5492e3affac20.png

如上图找到Internet 协议版本 4 (ICP/IPv4) 点击一下在点击右下角的属性

最后一步进入Internet 协议版本 4 (ICP/IPv4)之后点击使用下面的ip地址

ip地址填写为 192.168.0.1

子网掩码填写为255.255.255.0

设置完毕后电脑确认即可 如下图所示

责任编辑:

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这类报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值