100以内的合数分解成质数_一课研究之西师版和现代版“质数与合数”教材比较研究(20201128)...

01.

向你介绍我是谁

756e7222047356bde119fac5c40092a5.png

大家好!我是翁秀萍,来自杭州市崇文世纪城实验学校,是朱乐平数学名师工作站“一课研究”成员。很高兴在微信平台与您分享!

3537ca1dc57abf66d46e08280da1f00e.png

02.

本期内容有哪些

听一听:作业,也可以让孩子“满怀期待”

读一读:《西师版和现代版“质数与合数”教材比较研究》

想一想:找一找最大的真分数

3537ca1dc57abf66d46e08280da1f00e.png

03.

轻轻松松听听书

节选自《小学数学教师》2020.6卷首语

——作业,也可以让孩子“满怀期待”

 刘善娜(宁波市奉化区实验小学)

04.

坚持阅读8分钟

《西师版和现代版“质数与合数”教材比较研究》

一、问题的提出

      “质数与合数”是小学阶段基础而又重要的概念之一。“质数与合数”在数论中有着重要的作用。数论主要研究整数的性质,而整数的基本元素是质数。从某种意义上来说,自然数是由质数构成的。数基本定理说:大于1的自然数都可以分解成有限个质数的乘积。因此,“质数与合数”在小学数学教学中有着十分重要的地位。

      本文选取了两种版本的教材进行比较研究,它们分别是2012年的西南师大出版社出版的(以下简称西师版),2006年初的现代教育研究社出版的(以下简称现代版)。

二、分析框架的建构

      我主要从微观角度去分析、对比这两个教材中编排的差别,具体从教材引入、概念呈现、概念巩固这三方面来分析。

三、比较分析结果

      我首先找到了“质数与合数”具体的教学年级:西师版把“质数与合数”这个教学内容编排在五下第一单元倍数和因数;现代版编排在四下B第五单元后面“增润项目”,相当于拓展内容或选上内容。两种版本的共同点:都是先尝试找出各自的因数,再观察进行比较,分类,得出定义。

(一)教材引入

      西师版的教材题目是:合数、质数。第一部分的问题是:写出下面每个数的所有因数。第二部分,让学生自己写出这8个数的约数分别是哪些。第三部分,提出“议一议 你发现了什么?”第四部分,是几个学生在对话:“它们都有因数1”,“每一个数的最大因数是它本身”,“我发现2,11,29的因数……”。教材借助学生的对话来给出内容, 不是直接给出结论的。最后一个学生的回答实际上是为分类,提供一个暗示:发现因数的个数是不同的,可以依据这个去分类。

      现代版的教材题目是质数和合成数。从后面的教材理解,合成数就是合数。第一部分的问题是:试找出1至20的因数,并看看各数有多少个因数。第二部分,对应前面的问题给出了一个表格,包括数、它的因数、因数数量三个栏目。还尝试做了4个数。第三部分,是一个学生“从因数数量的多少,把1-20的数分成了三类”。

3268441eba1f64584a032e01021c470d.png

    很明显,西师版和现代版的引入的第一部分内容中,西师版只给出了8个数,现代版给出了20个数。在这里8个数与20个数,量有不同,说明学生要写出数的个数,客观思考的量也就不同。现代版提供比较多的数的个数,为下面的分类提供了更多的例子。比如小男孩把这20个数分成三类。

      下面是两个教材引入部分提供的数的对比表:

3929eaf462a7f55497174aa5158e4631.png

      通过对比发现,西师版引入部分中数的个数比较少,不连续;现代版数的个数多,且连续。

      在问题的提出方面,西师版教材是这样问的:议一议:你发现了什么?这里当然可以发现因数个数的规律,可以分类。这个“发现”的意思非常宽泛,所有观察到的、发现的都可以说。不过教材怕没有学生注意到因数的个数,所以最后一个学生的话算是提醒,也是一个暗示。而现代版中就很直接问:并看看各数有多少个因数。想引导学生根据因数的个数进行分类。

      从提出问题来看,西师版比较开放,现代版比较封闭。开放的更有利于培养学生的思维能力;封闭的更有利于学生聚焦重点。

      还发现,西师版没有引导学生对这些数进行分类,现代版有分类;西师版教材中明显强调学生交流,而现代版教材中不明显强调学生交流,更像是师生间的一问一答。

(二)概念呈现

      西师版的教材中对“质数与合数”概念的呈现和举例是这样的:质数与合数举例的数,是之前引入部分的8个数,三个是质数,四个是合数。还有一个是1,1不是质数,也不是合数。  

4bb08c992fa273f703777e3dc152fdbc.png

      现代版的教材与西师版教材的概念呈现相比,有一个较大的差别:那就是西师版是先出现质数、合数,再出示1的;而现代版却是先说明1,再说明质数与合数的。在质数与合数的举例中,也是用原来给出的20以内的数。

83a0a322b84c22302b1b1fe8471ef17b.png

      对比这两个教材,在概念呈现方面,现代版更重视分成三类,且很重视1这一类。表述也不同,现代版句子比较短,直接指出:正好有两个因数的,括号里说明这两个因数是1和本身;西师版:只有1和它本身两个因数的数,比较长,对数的定义比较长。合数也同样。

      现代版概念描述更简短,利于学生理解与表述。

(三)概念巩固

      西师版的教材中通过试一试,来判断八个数是质数还是合数,要求分别填在相应的圈里。

      后面通过例2“把42写成质数相乘的形式”这么一个问题,其实是学习“分解素因数”,但没有出概念。不过教材呈现了三种不同的方法。在试一试之后,后面是一个“课堂活动”做50以内的素数表。给出了具体操作方法。

e7fd511d153d84dcf6a77220d250f33d.png

      现代版教材中,也有一个判断数是质数还是合数,只有一个数:21。不过加了一个问题,就是为什么?然后例2“找质数”,制作百以内质数表后,回答相应的问题,在“堂课研习”和“思考站”继续深入研究质数。  

99f0fcb15582e9bc292a20cfcd07e3d6.png

      综上所述,两个教材都各编排了一道“判断数是质数还是合数的练习”。西师版教材中是以“试一试”呈现的,给出的是8个数,有一个数是比较大的,72。而现代版教材中是以“思考站”的形式呈现的,只有一个数21。

      从数的个数上看,西师版数量比较多;从思考方法上来看,现代版追问了一个问题:为什么?希望学生判断时有所依据。

      西师版还有一个环节,是把数写成质数相乘的形式,以此巩固质数这个概念。而现代版是没有的。

      下面我们来看看教材中,对质数表是如何处理的。

      西师版教材中直接提出要求:1.先把…,2.把上面没有划去的数由小到大写下去,看看它们是什么数。是先操作,再发现这样的操作可以制作质数表。

      而现代版的教材中以一个核心问题——“找质数”引出,一个学生提出一个问题:你可以找出100以内的所有质数吗?学生先自己思考方法,通过交流讨论,引出“爱氏筛”法,并且给出步骤,引导学生自己制作。制作百以内质数表后,要回答相应的问题,在“堂课研习”和“思考站”继续深入研究质数。很明显,比较注重思维的培养。

四、启发

      (一)学习材料中提供的数的个数要更多更连续。

      这两个教材引入部分,提供的数的个数,各有不同。“所谓数学概念的形成,是指学生依据直接经验,从大量的具体例子出发,在数学概念的具体例证中通过归纳一类数量关系或空间形式的共同属性,从而获得初级概念,并把概念的本质属性推广到同类事物中的过程。”⑴应该说:数量多的更有利于学生进行分类和归纳。

      我们知道在这里是考察个别的数的特殊例子。考察这些特殊例子中因数个数的多少,然后逐步地归纳出像这样一类:只有1和它本身两个因数,我们叫质数。这是一个归纳的过程,它是一个从特殊到一般的过程。这个特殊到一般,特殊的例子多一点,当然就有利于归纳出一般的结论。

      而且西师版的8个数是不连续的,现代版的20个数是连续的。连续的数,更利于学生发现。数的连续,更具普适性,利于发现与归纳。

     (二)教材中可以多提供学生交流的机会。

      西师版当学生写出了8个数的约数之后,提问:你发现了什么?每个学生的发现可能不同,就给他们的交流提供了机会。

      现代版在百数表中找质数时,问:你可以找出100以内的所有质数吗?并没有给出任何暗示。

      这样的问题对学生的学习既有思考的空间,又有交流的必要,加上交流后老师适当的引导,是对学生个性的尊重和差异的尊重,每一个学生都能从中感受到成功的喜悦。

     (三)教材中应要求学生提供解释和推理的过程。

      现代版教材中,在“判断数是质数还是合数”这个练习中,虽然只有一个数21,但是它要求学生回答“为什么?”这样的话就会促使学生运用概念思考自己的判断,是否正确。

      我们应该在教材中设置更多的富有反思性的问题,要求学生解释答案合理性、正确性的依据。如:为什么?你是怎么算的?你怎么知道的?你怎么想出来的?等等,为学生提供更多反思的机会。

【参考文献】

[1]宋乃庆,张奠宙.小学数学教育概论.北京:高等教育出版社,2008.第147页

[2]张文宇,张守波.海峡两岸小学数学教材分数内容例题的比较研究[J].数学教育学报,2015,24(3):68-72.

05.

想一想:

100以内的任意两个质数都可以组成一个真分数,求其中最大的真分数。
那么1000以内的任意两个质数都可以组成一个真分数,求其中最大的真分数,又该是多少呢?

3d80ee5463c4dfd6507c903cafa1b937.png

审核人:王相春   叶学品

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值