建立中序线索链表算法_【数据结构——遍历二叉树和线索二叉树】

本文详细介绍了数据结构中的中序线索二叉树,包括遍历二叉树的三种规则,以及中序线索化的算法实现和如何遍历中序线索二叉树。通过先序、中序和后序遍历的规则,阐述了遍历二叉树的基本思想,并讨论了线索二叉树的线索化过程和结点的前驱后继查找方法。
摘要由CSDN通过智能技术生成

【数据结构——遍历二叉树和线索二叉树】

目录

  • 【数据结构——遍历二叉树和线索二叉树】

  • 一、遍历二叉树

    • (一)遍历的三种规则

      • 1、先序遍历

      • 2、中序遍历

      • 3、后序遍历

    • (二)遍历的相关算法

      • 1、先序遍历建立二叉链表

      • 2、统计二叉树中叶子结点的个数

      • 3、求二叉树的深度

      • 4、复制二叉树

      • 5、统计二叉树中结点的个数

  • 二、线索二叉树

      • 1、相关概念

      • 2、中序线索化算法

      • 3、遍历中序线索二叉树

一、遍历二叉树

遍历的定义——指按某条搜索路线遍访每个结点且不重复(又称周游)

(一)遍历的三种规则

1、先序遍历

4b8b3f32effe303ba607b784ed4409ab.png

若二叉树为空,则:空操作
否则:
访问根结点(D);
先序遍历左子树(L);
先序遍历右子树(R);

void PreOrderTraverse(BiTree T){
      if (T)  //非空二叉树  {
        printf("%d", T->data);  //访问根结点    PreOrderTraverse(T->lchild); //递归遍历左子树    PreOrderTraverse(T->rchild);  //递归遍历右子树  }}

2、中序遍历

cc2b7e2a182d5703f5ad83c66410e1d7.png

若二叉树为空,则:空操作
否则:

中序遍历左子树(L);
访问根结点(D);
中序遍历右子树(R);

void InOrderTraverse(BiTree T){
      if (T)  //非空二叉树  {
        InOrderTraverse(T->lchild); //递归遍历左子树    printf("%d", T->data);  //访问根结点    InOrderTraverse(T->rchild);  //递归遍历右子树  }}<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值