问道服务器etc修改教程,常用的修改etc对照表-详细版

自定义加装备:

suit.list 套装属性

equip.list     加装备属性

basic_boot.list  鞋子

basic_belt.list   腰带

basic_necklace.list  项链

basic_helmet.list    帽子

basic_armor.list     衣服

basic_baldric.list   玉佩

basic_weapon.list     武器

basic_wrist.list      手镯

自定义加boss:

guaiwugongcheng.list    BOSS攻城

boss_monster.list    BOSS奖励

boss_template.list   BOSS属性

boss_refresh.list    BOSS生成地点及等级

basic_boss_monster.list   BOSS种类文件

attrib_show_name.list   属性对应(boss属性对应,装备属性对照等)

开启活动地图(就是传说中新地图)

room  开放活动地图(加个传送阵就好了)

商城:

onlinemall.list   商城(金银都是这个。)

seven_year_mall.list 七周年商城

task_score.list 积分大使

task_item 仙灵卡价格

extra 改装备粉黄绿属性

item_temp_desc 道具描述

charge_item.list 道具外观

service_item  道具时间

basic_raw_npc.list 修复通天塔

npc.list

basic_static_menu_npc.list

equip.list  装备出售价格

wedding_dress 加时装

coupon.list   level_up_bonus 南极仙翁升级奖励

basic_static_menu_npc.list    游戏全部NPC对话

monster           添加宠物

pet_effect     宠物成长

pet_evolve     宠物进化表

pet_skills     宠物技能表

appellation_name.list    颜色称号

treasureboxd.list 天降宝箱活动

five_anniversary.list    五周年庆典大使

fishing.list    问道捕鱼活动

grant.list    GM权限功能文件

inborn_mount_stone.list    坐骑兽魂石技能石编码叠加

inborn_skill_stone.list    坐骑兽魂石技能石编码叠加

jiuwu_zhizun.list     九周年九五之尊活动

mount.list     加坐骑编码

mount_item_attrib.list    加坐骑介位

appellation_effect.list,称号属性

开启切糕

zhongzhou_cifu_2016.list,活动-【国庆节】中洲赐福

zhongzhou_cifu_2016_test.list,活动-【国庆节】中洲赐福

融丹,奖券都在ccs csa文件里面

Lottery   ccs里面奖券

elixir

elixir_ns

elixir_ns_test

elixir_test     融丹,ccs内 csa内都有 一个新服 一个全服

### 知识图谱问答系统二次训练的方法与最佳实践 对于知识图谱问答系统的优化,通常涉及模型微调以及数据集的选择和处理。通过引入特定领域的新数据来增强现有模型的表现力是一项重要工作。 #### 数据准备 为了有效执行细调操作,需收集高质量标注样本作为补充材料[^1]。这些额外的数据应当覆盖目标应用范围内的各种可能查询模式及其对应的答案形式。这有助于提升模型理解复杂语义关系的能力并扩大其适用场景边界。 #### 模型架构调整 考虑到不同任务需求之间的差异,在原有基础上适当修改网络结构可能是必要的。例如增加注意力机制层可以加强实体间关联性的捕捉;而采用递归神经元则有利于处理序列化输入特征如时间戳或路径信息等特殊类型的表达方式[^2]。 #### 训练策略制定 设定合理的损失函数权重参数组合能够促进多模态融合效果最优化。此外,利用迁移学习技术从预训练好的大规模通用语言表示中获取有益先验知识也是提高性能的有效手段之一。同时保持较低的学习率以防止过拟合现象发生同样不可忽视。 ```python import torch.nn as nn class KnowledgeGraphQA(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(KnowledgeGraphQA, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True) def forward(self, x): embedded = self.embedding(x) output, _ = self.rnn(embedded) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值