背景简介
在高性能计算领域,英特尔至强融核协处理器(Xeon Phi)是提升计算性能的关键技术之一。本篇博文将基于《Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition》第3章和第4章的内容,详细探讨如何优化并行应用程序,以充分利用Xeon Phi协处理器的性能优势。
表达并行性的进一步阅读
在掌握MPI并行编程和Xeon Phi协处理器使用的基础上,读者可以参考以下资源来深入了解并行性的表达和优化:
- 官方MPI论坛网站:提供MPI标准的最新信息和文档。
- Intel MPI文档:了解Intel MPI的实现细节和特定于版本的信息。
- 阿贡国家实验室(ANL)的资源列表:包含手册、教程、白皮书等。
- MPICH网站的MPI例程参考:提供详细的函数和规范。
- Intel MPI参考指南:涵盖Intel实现MPI的特定信息。
- Michael J. Quinn的书籍:介绍MPI及OpenMP的互操作性。
优化并行应用程序
优化路线图
对于Xeon Phi协处理器,优化领域与Xeon处理器类似,但要求更为严格。开发者应关注以下几个关键点:
- 通用优化 :通过使用单精度浮点运算、移除不必要的类型转换、消除公共子表达式等方法提高性能。
- 向量化性能关键循环 :确保性能关键循环能被成功向量化,以充分利用Xeon Phi的计算能力。
- 扩展超过100个线程 :确保应用程序可以扩展到超过100个线程,并优化线程同步和内存访问。
- 算术密集型或带宽限制型工作负载 :优化内存访问模式,利用缓存层次结构。
- 主机与协处理器间通信效率 :优化数据传输,减少通信开销。
优化预期
优化Xeon处理器的应用程序通常也能提升Xeon Phi协处理器的性能。在理想情况下,单个Xeon Phi协处理器的性能可能超过双Xeon处理器系统。
基准方法学
为了衡量优化带来的性能提升,应当对应用程序进行基准测试。基准测试可以采用Linux的 time
命令或OpenMP的计时函数,确保统计结果的准确性和重复性。
基准计算系统
在基准测试中,使用了特定配置的硬件和软件环境,包括Intel E5-2697 V2处理器、Intel Xeon Phi 7120P协处理器和CentOS 7.0操作系统等。
标量和通用优化
编译器控制优化
开发者可以使用编译器选项(如 -O2
或 -O3
)来启用编译器的优化功能。这些选项将提高编译代码的性能,并能自动进行向量化等优化操作。
总结与启发
通过本文的介绍,我们可以了解到在使用英特尔至强融核协处理器进行并行编程时,向量化、线程并行性和内存流量控制是优化的关键。开发者需要对应用程序进行细致的分析和调整,以确保充分利用Xeon Phi协处理器的并行性能。同时,通过合理利用编译器优化和进行基准测试,可以显著提高程序的执行效率。对于并行计算领域的开发者来说,掌握这些优化技术将有助于他们构建更高效、更强大的并行应用程序。
在未来的开发中,建议开发者关注最新的优化技术,如异构计算模型和机器学习优化方法,以不断提升程序性能,满足日益增长的计算需求。同时,也可以尝试将Xeon Phi协处理器的优化经验应用到其他多核和众核架构上,进一步扩展优化的范围和效果。