json解析 spark_使用Spark提取嵌套Json数据

本文介绍了如何使用Spark DataFrames处理嵌套的JSON文件。首先展示了一个JSON样本,然后通过SQLContext读取JSON文件到DataFrame。接着,通过explode函数分别抽取了dates和content字段,将它们转换为新的DataFrame。最后,展示了如何访问结构化数组中的数据,并提取foo和bar字段。
摘要由CSDN通过智能技术生成

JSON是一种常用的数据存储方式。但是JSON解析起来还是比较麻烦的,这里是通过Spark DataFrames处理嵌套Json的一些例子(Spark 版本为 1.6.0)

样本文件 sample.json

{

"user": "gT35Hhhre9m",

"dates": ["2016-01-29", "2016-01-28"],

"status": "OK",

"reason": "some reason",

"content": [{

"foo": 123,

"bar": "val1"

}, {

"foo": 456,

"bar": "val2"

}, {

"foo": 789,

"bar": "val3"

}, {

"foo": 124,

"bar": "val4"

}, {

"foo": 126,

"bar": "val5"

}]

}

假设你已经建立了一个SQLContext对象,下面的例子会给你演示怎么解析嵌套的Json文件。

将JSON文件载入 Spark DataFrame

scala> val df

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值