字典java程序_编程字典-Java xxxValue() 方法

689b4b5c0272099cd390da73a56916ad.png

Java xxxValue() 方法

xxxValue() 方法用于将 Number 对象转换为 xxx 数据类型的值并返回。

相关的方法有:

类型 方法及描述byte **byteValue() :** 以 byte 形式返回指定的数值。abstract double **doubleValue() :** 以 double 形式返回指定的数值。abstract float **floatValue() :** 以 float 形式返回指定的数值。abstract int **intValue() :** 以 int 形式返回指定的数值。abstract long **longValue() :** 以 long 形式返回指定的数值。short **shortValue() :** 以 short 形式返回指定的数值。

参数

以上各函数不接受任何的参数。

返回值

转换为 xxx 类型后该对象表示的数值。

实例

Test.java 文件

public class Test{

public static void main(String args[]){

Integer x = 5;

// 返回 byte 原生数据类型

System.out.println( x.byteValue() );

// 返回 double 原生数据类型

System.out.println(x.doubleValue());

// 返回 long 原生数据类型

System.out.println( x.longValue() );

}

}

编译以上程序,输出结果为:

5

5.0

5

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
sentiment_df是针对Loughran-McDonald情感分析词典生成的一个带有情感得分的数据框。Loughran-McDonald情感分析词典是一种常用的基于词典的情感分析方法,其基本思想是根据单词在语料库中出现的频次以及其在特定主题中的频次推断其情感极性。该词典中包含了6000余个财务相关的单词,并将情感极性分为正面、负面和中性三种。 生成sentiment_df字典的过程通常包括以下几个步骤。首先,需要对需要分析的文本进行分词,并将分词后的文本去除停用词等无关词汇,以便更精确地测量各种情感极性的得分。接下来,需要使用Loughran-McDonald情感分析词典中的情感词表对分词后的文本进行情感词筛选。对于每一个正面或负面的情感词,都可以根据其在Loughran-McDonald情感分析词典中的得分,计算出其在文本中所占的情感得分。对于每篇文本来说,可以得到一组正面得分和负面得分,并以此生成sentiment_df字典。 在使用sentiment_df字典进行分析时,可以将其与其他数据框进行连接,以便进一步探究文本的情感走向。例如,可以通过将分析文本的发布日期、大小、来源等信息与sentiment_df字典进行连接,进一步了解情感得分在时间、空间和社交媒体平台等不同维度上的变化趋势。此外,还可以利用可视化工具对sentiment_df字典进行可视化处理,以便更直观地展示文本情感走向和分析结果。 总之,sentiment_df字典生成是Loughran-McDonald情感分析方法中的重要步骤,它提供了一种基于词频和情感词分析的情感分析方法,可以在金融、企业舆情等领域发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭爱萍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值