python 存储文件加速_python频繁写入文件怎么提速

50a9806b7e62aa6658deed1bc520e868.png

问题背景:有一批需要处理的文件,对于每一个文件,都需要调用同一个函数进行处理,相当耗时。

有没有加速的办法呢?当然有啦,比如说你将这些文件分成若干批,每一个批次都调用自己写的python脚本进行处理,这样同时运行若干个python程序也可以进行加速。

有没有更简单的方法呢?比如说,我一个运行的一个程序里面,同时分为多个线程,然后进行处理?

大概思路:将这些个文件路径的list,分成若干个,至于分成多少,要看自己cpu核心有多少,比如你的cpu有32核的,理论上就可以加速32倍。

代码如下:# -*-coding:utf-8-*-

import numpy as np

from glob import glob

import math

import os

import torch

from tqdm import tqdm

import multiprocessing

label_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/label.txt'

file_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/distortion_image'

save_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/flow_field'

r_d_max = 128

image_index = 0

txt_file = open(label_path)

file_list = txt_file.readlines()

txt_file.close()

file_label = {}

for i in file_list:

i = i.split()

file_label[i[0]] = i[1]

r_d_max = 128

eps = 1e-32

H = 256

W = 256

def generate_flow_field(image_list):

for image_file_path in ((image_list)):

pixel_flow = np.zeros(shape=tuple([256, 256, 2])) # 按照pytorch中的grid来写

image_file_name = os.path.basename(image_file_path)

# print(image_file_name)

k = float(file_label[image_file_name])*(-1)*1e-7

# print(k)

r_u_max = r_d_max/(1+k*r_d_max**2) # 计算出畸变校正之后的对角线的理论长度

scale = r_u_max/128 # 将这个长度压缩到256的尺寸,会有一个scale,实际上这里写128*sqrt(2)可能会更加直观

for i_u in range(256):

for j_u in range(256):

x_u = float(i_u - 128)

y_u = float(128 - j_u)

theta = math.atan2(y_u, x_u)

r = math.sqrt(x_u ** 2 + y_u ** 2)

r = r * scale # 实际上得到的r,即没有resize到256×256的图像尺寸size,并且带入公式中

r_d = (1.0 - math.sqrt(1 - 4.0 * k * r ** 2)) / (2 * k * r + eps) # 对应在原图(畸变图)中的r

x_d = int(round(r_d * math.cos(theta)))

y_d = int(round(r_d * math.sin(theta)))

i_d = int(x_d + W / 2.0)

j_d = int(H / 2.0 - y_d)

if i_d < W and i_d >= 0 and j_d < H and j_d >= 0: # 只有求的的畸变点在原图中的时候才进行赋值

value1 = (i_d - 128.0)/128.0

value2 = (j_d - 128.0)/128.0

pixel_flow[j_u, i_u, 0] = value1 # mesh中存储的是对应的r的比值,在进行畸变校正的时候,给定一张这样的图,进行找像素即可

pixel_flow[j_u, i_u, 1] = value2

# 保存成array格式

saved_image_file_path = os.path.join(save_path, image_file_name.split('.')[0] + '.npy')

pixel_flow = pixel_flow.astype('f2') # 将数据的格式转换成float16类型, 节省空间

# print(saved_image_file_path)

# print(pixel_flow)

np.save(saved_image_file_path, pixel_flow)

return

if __name__ == '__main__':

file_list = glob(file_path + '/*.JPEG')

m = 32

n = int(math.ceil(len(file_list) / float(m))) # 向上取整

result = []

pool = multiprocessing.Pool(processes=m) # 32进程

for i in range(0, len(file_list), n):

result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],)))

pool.close()

pool.join()

在上面的代码中,函数

generate_flow_field(image_list)

需要传入一个list,然后对于这个list进行操作,之后对操作的结果进行保存

所以,只需要将你需要处理的多个文件,切分成尽量等大小的list,然后再对每一个list,开一个线程进行处理即可

上面的主函数:if __name__ == '__main__':

file_list = glob(file_path + '/*.JPEG') # 将文件夹下所有的JPEG文件列成一个list

m = 32 # 假设CPU有32个核心

n = int(math.ceil(len(file_list) / float(m))) # 每一个核心需要处理的list的数目

result = []

pool = multiprocessing.Pool(processes=m) # 开32线程的线程池

for i in range(0, len(file_list), n):

result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理

pool.close() # 处理结束之后,关闭线程池

pool.join()

主要是这样的两行代码,一行是pool = multiprocessing.Pool(processes=m) # 开32线程的线程池

用来开辟线程池

另外一行是result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理

对于线程池,用apply_async()同时跑generate_flow_field这个函数,传入的参数是:file_list[i: i+n]

实际上apply_async()这个函数的作用是所有的线程同时跑,速度是比较快的。

更多Python相关技术文章,请访问Python教程栏目进行学习!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值