matlab fitctree 原理,电力窃漏电用户自动识别.PDF

电力系统中,利用计量异常数据和终端报警信息构建的fitctree分类模型,旨在自动识别窃漏电用户。传统方法依赖人工,而现代模型通过电流、电压等数据特征,结合专家知识,提高了定位精度,减少了主观性。
摘要由CSDN通过智能技术生成

电力窃漏电用户自动识别

《MATLAB 数据分析与挖掘实战》第 6 章

第6章 电力窃漏电用户 自动识别

6.1背景与挖掘目标

传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等手段来发现窃

电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。目前很多供电

局主要通过营销稽查人员、用电检查人员和计量工作人员利用计量异常报警功能和电能量数

据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、

主站报警、线损异常等信息,建立数据分析模型,来实时监测窃漏电情况和发现计量装置的

故障。根据报警事件发生前后客户计量点有关的电流、电压、负荷数据情况等,构建基于指

标加权的用电异常分析模型,实现检查客户是否存在窃电、违章用电及计量装置故障等。

以上防窃漏电的诊断方法,虽然能获得用电异常的某些信息,但由于终端误报或漏报过

多,无法达到真正快速精确定位窃漏电嫌疑用户的目的,往往令稽查工作人员无所适从。而

且在采用这种方法建模时,模型各输入指标权重的确定需要用专家的知识和经验,具有很大

的主观性,存在明显的缺陷,所以实施效果往往不尽如人意。

现有的电力计量自动化系统能够采集到各相电流、电压、功率因数等用电负荷数据以及

用电异常等终端报警信息。异常告警信息和用电负荷数据能够反映用户的用电情况,同时稽

查工作人员也会通过在线稽查系统和现场稽查来查找出窃漏电用户,并录入系统。若能通过

这些数据信息提取出窃漏电用户的关键特征,构建窃漏电用户的识别模型,就能自动检查判

断用户是否存在窃漏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值