cart决策树Matlab实现,CART决策树的理解及其实现

CART决策树介绍

使用CART(Classification and regression tree)算法构建的决策树是二叉树,它对特征进行二分,迭代生成决策树。

CART回归树

假设X与Y分别为输入和输出变量,并且Y是连续变量,给定训练数据集

$$D=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}$$

考虑如何生成回归树。

一个回归树对应着输入空间(即特征空间)的一个划分以及在划分的单元上的输出值。假设已将输入空间划分为M个单元$R_1|R_2,...,R_M$,并且在每个单元$R_m$上有一个固定的输出值$c_m$,于是回归树模型可表示为

$$f(x)=\sum_{m=1}^Mc_mI(x\in R_m)\tag{1}$$

当输入空间的划分确定时,可以用平方误差$\sum_{x_i\in R_m}(y_i-f(x_i))^2$来表示回归树对于训练数据的预测误差,用平方误差最小的准则求解每个单元上的最优输出值。易知,单元$R_m$上的$c_m$的最优值$\hat{c_m}$是$R_m$上的所有输入实例$x_i$对应的输出$y_i$的均值,即

$$\hat{c_m}=ave(y_i|x_i\in R_m)\tag{2}$$

这里选择第j个遍历$x^{j}$和它的取值s,作为切分遍历和切分点,并定义两个区域(左右结点)

$$\begin{cases} R_1(j,s)=\{x|x^{j}\leq s\}\\ R_2(j,s)=\{x|x^{j}> s\} \end{cases} \tag{3}$$

然后寻找最优切分变量j个最优切分点s。具体地,求解

$$min_{j,s}[min_{c_1}\sum_{x_i\in R_1(j,s)}(y_i-c_1)^2+min_{c_2}\sum_{x_i\in R_2(j,s)}(y_i-c_2)^2]\tag{4}$$

对固定输入变量j可以找到最优切分点s

$$\begin{cases}\hat{c_1}=ave(y_i|x_j\in R_1(j,s))\\ \hat{c_2}=ave(y_i|x_i\in R_2(j, s))\end{cases} \tag{5}$$

遍历所有输入变量,找到最优的切分变量j,构成一对(j,s)。以此将输入空间划分为两个区域。接着,对每个区域重复上述划分过程,知道满足停止条件为止(可以是满足叶子结点个数或误差阈值等条件)。这样就生成一颗回归树。这样的树通常称为最小二乘回归树。

具体过程如下

输入:训练数据集D(N,J)

输出:回归树f(x)

选择最优切分变量(特征)和切分点遍历所有特征。对该特征,按照式(3)依次计算第j个特征下的每个取值对应的平方误差。选择最小的特征和特征切分点对。

使用上一步得到的最佳的特征和特征切分对数据集D进行切分,得到左子树(满足条件进入)和右子树(不满足条件进入)。

继续执行步骤1和2(生成子树),直至满足停止条件。

得到回归树。

这里举一个简单的例子,介绍一下连续变量如何切分(和C4.5的处理方式是一样的)。

下表是一个数据集,包含了一个特征x,x为连续变量。y为类别标签。现在利用这个数据集来构建一个CART回归树。

x

1

2

3

4

5

6

7

8

9

y

0.3

0.5

0.7

0.8

0.95

1.3

1.5

1.6

1.9

首先需要选择特征和特征切分点

特征x包含了9个元素,长度为9,这里x已经排序好了,直接以$\frac{x_i+x_{i+1}}{2},i\in \{1,2,..., 9\}$作为切分点(一种常用的切分方式)。

从第一个切分点开始,第一个切分点为$\frac{1 + 2}{2}=1.5$。小于1.5则归到$R_1$(左子树),大于1.5则归为$R_2$(右子树)。

根据式(3)可得,$R_1=\{1\}$,$R_1=\{2,3,4,5,6,7,8,9\}$,根据式(5)可得,$c_1=0.3$,$c_2=\frac{0.5+0.7+0.8+0.95+1.3+1.5+1.6+1.9}{8}$,所以根据式(4),第一个切分点对应平方误差为$0+0.21=0.21$。按照这种方式依次计算每个切分点对应的误差,选择具有最小误差的切分点。

CART分类树

CART分类树使用最小基尼指数(Gini)准则来选择特征,同时决定最优切分点。

基尼指数的定义如下

$$G(p)=\sum_{k=1}^Kp_k(1-p_k)=1-\sum_{k=1}^Kp_k^2\tag{6}$$

对于指定的数据集D,其基尼系数为:

$$G(D)=\sum_{k=1}^K\frac{|C_k|}{|D|}(1-\frac{|C_k|}{|D|})\tag{6}$$

$|C_k|$表示第k类的样本数目。

设特征A的取值将数据集D分成两部分$D_1$和$D_2$。在特征A的条件下,数据集D的基尼系数定义为:

$$G(D,A)=\sum_{k=1}^K\frac{|D_1|}{|D|}G(D_1)+\sum_{k=1}^K\frac{|D_2|}{|D|}G(D_2)$$

G(D)表示数据集D的不确定性,基尼指数越大,不确定性越大。这点和熵比较相似。

CART分类决策树和上一节中的ID3和C4.5构建决策树的差别不大,这里就不细说。下面直接给出CART分类树构建的代码。

代码实现

结点

class Node:

def __init__(self, val, tag=None):

"""

Params:

val: 特征名(内部节点)或类别标签(叶子节点)

tag: 切分点

left: 左子树

right: 左子树

"""

self.val = val

self.left = None

self.right = None

self.tag = tag

def __str__(self):

return f'val: {self.val}, tag: {self.tag}'

CART分类树

class CARTClassifier:

def __init__(self, thresh=1e-3, feat_names=None):

self.tree = None

self.feat_names = feat_names

self.thresh = thresh

def fit(self, x_train, y_train):

"""

构建决策树

"""

self.tree = self._build(x_train, y_train)

print('Finish train...')

def predict(self, x_test, y_test=None):

"""

预测

"""

if self.tree == None:

return

y_pred = []

for x in x_test:

y_pred.append(self._search(x))

y_pred = np.array(y_pred)

if y_test is not None:

self._score(y_test, y_pred)

return y_pred

def _search(self, x):

"""

根据特征取值进行搜索

"""

root = self.tree

tag = root.tag

while tag is not None:

idx = self.feat_names.index(root.val)

if isinstance(x[idx], str):

root = root.left if x[idx] == root.tag else root.right

else:

root = root.left if x[idx] < root.tag else root.right

tag = root.tag

return root.val

def _score(self, y_test, y_pred):

"""

计算预测得分(准确率)

"""

self.score = np.count_nonzero(y_test == y_pred) / len(y_test)

def _build(self, x, y):

"""

Params:

x(pandas.DataFrame): 特征features

y(pandas.DataFrame or numpy.array): 标签labels

"""

cks, cnts = np.unique(y, return_counts=True)

if len(cks) == 1:

return Node(cks[0])

if x.shape[0] == 0:

return None

self.feat_names = list(x.columns)

best_gini = float('inf')

best_split = None

best_feat = 0

# 特征选择

for i in range(x.shape[1]):

if x.iloc[:, i].dtypes != 'object':

gini, split = self.calc_cond_gini_continuous(x.iloc[:, i], y)

else:

gini, split = self.calc_cond_gini(x.iloc[:, i], y)

if gini < best_gini:

best_gini = gini

best_split = split

best_feat = i

if best_gini < self.thresh:

return Node(cks[cnts.argmax(0)])

tree = Node(self.feat_names[best_feat], best_split)

# 连续特征处理

if x.iloc[:, best_feat].dtypes != 'object':

fmask = x.iloc[:, best_feat] < best_split

bmask = x.iloc[:, best_feat] > best_split

# 离散特征处理

else:

fmask = x.iloc[:, best_feat] == best_split

bmask = x.iloc[:, best_feat] != best_split

tree.left = self._build(x[fmask], y[fmask])

tree.right = self._build(x[bmask], y[bmask])

return tree

# 计算基尼系数

def calc_gini(self, label):

gini = 0

for (ck, cnt) in zip(*np.unique(label, return_counts=True)):

prob_ck = cnt / len(label)

gini += prob_ck * (1 - prob_ck)

return gini

# 处理离散特征

def calc_cond_gini(self, feat, label):

cks = np.unique(feat)

best_gini = float('inf')

best_split = 0

for ck in cks:

fmask = feat == ck

bmask = feat != ck

cond_gini = sum(fmask) * self.calc_gini(label[fmask])/ len(label) + sum(bmask) * self.calc_gini(label[bmask])/ len(label)

if cond_gini < best_gini:

best_gini = cond_gini

best_split = ck

return best_gini, best_split

# 处理连续特征

def calc_cond_gini_continuous(self, feat, label):

# 对特征进行升序排序

sorted_feat = np.sort(feat, axis=0)

sorted_feat = np.unique(sorted_feat)

# 确定可能的划分点

split_pos = (sorted_feat[:-1] + sorted_feat[1:]) / 2

best_gini = float('inf')

best_split = 0

for pos in split_pos:

lmask = feat < pos

rmask = feat > pos

cond_gini = sum(lmask) * self.calc_gini(label[lmask])/ len(label) + sum(rmask) * self.calc_gini(label[rmask])/ len(label)

if cond_gini < best_gini:

best_gini = cond_gini

best_split = pos

return best_gini, best_split

def pruning(self, tree, x_test, y_test):

"""

后剪枝

根据测试集, 对创建好的决策树进行剪枝

"""

# TODO

pass

def preorder(self):

"""

决策树前序遍历

"""

print('--- PreOrder ---')

tree = self.tree

self._preorder(tree)

def _preorder(self, tree):

if tree == None:

return

print(tree)

self._preorder(tree.left)

self._preorder(tree.right)

构建CART决策树并执行分类,这里还是以Iris数据集为例

# 读取数据

data = load_iris()

x, y = data['data'], data['target']

# 分割成训练集和测试集

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=20190320, test_size=0.1)

x_train = pd.DataFrame(x_train, columns=data.feature_names, index=None)

# 构建决策树

tree = CARTClassifier()

tree.fit(x_train, y_train)

# CART决策树前序遍历

tree.preorder()

# 执行预测

y_pred = tree.predict(x_test, y_test)

print(tree.score)

代码实现结果

bVbELjb

总结

本节主要介绍了CART回归树和分类树的构建过程,决策树的剪枝之后再讨论吧,就这样吧。

Reference

李航《统计学习方法》

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值