java math.floordiv,Python pandas.DataFrame.floordiv函数方法的使用

DataFrame.floordiv(self, other, axis='columns', level=None, fill_value=None)

获取dataframe和其他元素的整数除法(二进制操作符floordiv)。

与dataframe // other等价,但支持用fill_value替换其中一个输入中丢失的数据。与反向版本,rfloordiv。

在灵活的包装器(add,sub,mul,div,mod,pow)算术运算符:+,-,*,/,//,%,**。

参数:other : 标量(scalar),序列(sequence),Series或DataFrame

任何单个或多个元素的数据结构,或类似列表的对象。

axis: {0或'index',1或'columns'}

是按索引(0或“索引”)还是按列(1或“列”)进行比较。

对于Series输入,轴上要匹配Series索引。

level: 整数或标签

在一个级别上广播,

在传递的MultiIndex级别上匹配索引值。

fill_value : float或None,默认为None

在计算之前,请使用此值填充现有的缺失(NaN)

值以及成功完成DataFrame对齐所需的任何新元素。

如果两个对应的DataFrame位置中的数据均丢失,则结果将丢失。

返回值:DataFrame

算术运算的结果。

Notes

不匹配的索引将合并在一起。

例子>>> df = pd.DataFrame({'angles': [0, 3, 4],

... 'degrees': [360, 180, 360]},

... index=['circle', 'triangle', 'rectangle'])

>>> df

angles degrees

circle 0 360

triangle 3 180

rectangle 4 360

添加带有运算符版本的标量,该标量返回相同的结果>>> df + 1

angles degrees

circle 1 361

triangle 4 181

rectangle 5 361>>> df.add(1)

angles degrees

circle 1 361

triangle 4 181

rectangle 5 361

用常数除以反向版本>>> df.div(10)

angles degrees

circle 0.0 36.0

triangle 0.3 18.0

rectangle 0.4 36.0>>> df.rdiv(10)

angles degrees

circle inf 0.027778

triangle 3.333333 0.055556

rectangle 2.500000 0.027778

用操作员版本减去列表和按轴Series>>> df - [1, 2]

angles degrees

circle -1 358

triangle 2 178

rectangle 3 358>>> df.sub([1, 2], axis='columns')

angles degrees

circle -1 358

triangle 2 178

rectangle 3 358>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),

... axis='index')

angles degrees

circle -1 359

triangle 2 179

rectangle 3 359

将具有不同形状的DataFrame乘以运算符版本>>> other = pd.DataFrame({'angles': [0, 3, 4]},

... index=['circle', 'triangle', 'rectangle'])

>>> other

angles

circle 0

triangle 3

rectangle 4>>> df * other

angles degrees

circle 0 NaN

triangle 9 NaN

rectangle 16 NaN>>> df.mul(other, fill_value=0)

angles degrees

circle 0 0.0

triangle 9 0.0

rectangle 16 0.0

按级别除以MultiIndex>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],

... 'degrees': [360, 180, 360, 360, 540, 720]},

... index=[['A', 'A', 'A', 'B', 'B', 'B'],

... ['circle', 'triangle', 'rectangle',

... 'square', 'pentagon', 'hexagon']])

>>> df_multindex

angles degrees

A circle 0 360

triangle 3 180

rectangle 4 360

B square 4 360

pentagon 5 540

hexagon 6 720>>> df.div(df_multindex, level=1, fill_value=0)

angles degrees

A circle NaN 1.0

triangle 1.0 1.0

rectangle 1.0 1.0

B square 0.0 0.0

pentagon 0.0 0.0

hexagon 0.0 0.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值