pandas ---- pd.DataFrame基本用法

文章目录


前言

本部分主要介绍一些注意事项。另外,series是基础,好多用法都是series扩展一下,很类似的。

1 loc和iloc注意事项。(后面这些都会在笔记中提到)

(1)返回的是Series还是dataframe取决于你有没有加中括号
【注】:如果你对数组索引单个也加上中括号,那么返回的将是 DataFrame 而不是 Series这个规则是普遍适用的,下面也有,这个规则要记住
【注】:单个的一般大家都习惯不加中括号,大不了最后用 .squeeze() ---- DataFrame转Series或者 .to_frame()转一下
(2)loc可以直接布尔索引,iloc布尔索引后还有.values一下转成numpy数组才能布尔索引

2 DataFrame的维度

一、 DataFrame的创建 — pd.DataFrame(data,index=None,columns=None)

— data:可以是字典、列表、NumPy 数组、Pandas Series 或 DataFrame 等。
— index:指定行索引,可以是列表、NumPy 数组或 Pandas Index 对象。
— columns:指定列名,可以是列表、NumPy 数组或 Pandas Index 对象。
没有指定就生成默认的位置索引。

1 字典创建DataFrame(字典转Dataframe很常用)

## 利用字典创建DataFrame
dict = {
   '数学':[93,89,80,77],'英语':[90,80,70,75],'语文':[87,79,67,92]}
df1 = pd.DataFrame(dict)
print(df1)                          #      数学  英语  语文
                                    #   0   93   90    87
                                    #   1   89   80    79
                                    #   2   80   70    67
                                    #   3   77   75    92

df2 =pd.DataFrame(dict,index=['张三','李四','王五','赵六'])
print(df2)                          #      数学  英语  语文
                                    # 张三   93   90    87
                                    # 李四   89   80    79
                                    # 王五   80   70    67
                                    # 赵六   77   75    92

2 用numpy数组或者嵌套list创建DataFrame

# 从列表创建
data = [['Alice', 25], 
        ['Bob', 30], 
        ['Charlie', 35]]
df1 = pd.DataFrame(data,index=['a','b','c'] ,columns=['Name', 'Age'])
print(df1)                  #       Name  Age
                            # a    Alice   25
                            # b      Bob   30
                            # c  Charlie   35

# 从 NumPy 数组创建
data = np.array([[1, 2], 
                 [3, 4], 
                 [5, 6]])
df2 = pd.DataFrame(data, index=['a','b','c'], columns=['A', 'B'])      
print(df2)                  #    A  B
                            # a  1  2
                            # b  3  4
                            # c  5  6

二、DataFrame的访问、索引、切片、布尔索引、修改等操作

1 行切片访问 df[ : ] ---- 不能用单个数字索引,只能用切片索引(后面会用loc和iloc替代这个很呆的功能)— 默认位置索引和自定义索引都支持

【注1】:这里切片就是真要切片了,不支持 df[0] , df[1]这种
【注2】:所以就很呆,所以我们后面都会用loc和iloc来替代这个垃圾功能
【注3】:切片无论是有没有设置自定义index都可以用默认位置索引(左闭右开),用自定义(符号)index也可以,但是是(左闭右闭)

# 创建一个示例 DataFrame
data = {
   
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Age': [24, 27, 22, 32, 29],
    'Score': [85.5, 88.0, 95.0, 70.5, 80.0]
}
df = pd.DataFrame(data)        #      Name  Age  Score
print(df)                      # 0    Alice   24   85.5
                               # 1      Bob   27   88.0
                               # 2  Charlie   22   95.0
                               # 3    David   32   70.5
                               # 4      Eve   29   80.0

print(df[0:3])                 #      Name  Age  Score
                               # 0    Alice   24   85.5
                               # 1      Bob   27   88.0
                               # 2  Charlie   22   95.0    
                               
df2 = pd.DataFrame(data, index=['a', 'b', 'c', 'd', 'e'])      # 自定义一下索引
print(df2)                     #       Name  Age  Score
                               # a    Alice   24   85.5
                               # b      Bob   27   88.0
                               # c  Charlie   22   95.0
                               # d    David   32   70.5
                               # e      Eve   29   80.0
                               
print(df2[0:3])                #       Name  Age  Score
                               # a    Alice   24   85.5
                               # b      Bob   27   88.0
                               # c  Charlie   22   95.0
                               
print(df2['a':'c'])            #       Name  Age  Score
                               # a    Alice   24   85.5
                               # b      Bob   27   88.0
                               # c  Charlie   22   95.0
                               
print(df2[0])              # KeyError: 0 不能用数字索引,只能用切片索引

2 按列选择

df[‘column_name’]:选择单列,返回 Series。

df[[‘column_name’]] :选择单列,返回 DataFrame。

【注】:如果你对数组索引单个也加上中括号,那么返回的将是 DataFrame 而不是 Series这个规则是普遍适用的,下面也有,这个规则要记住
【注】:单个的一般大家都习惯不加中括号,大不了最后用 .squeeze() ---- DataFrame转Series或者 .to_frame()转一下

# 创建示例 DataFrame
data = {
   'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [24, 27, 22, 32],
        'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)
print(df)               #     Name  Age         City
                        # 0    Alice   24     New York
                        # 1      Bob   27  Los Angeles
                        # 2  Charlie   22      Chicago
                        # 3    David   32      Houston
                        
print(df['Name'])       # 0      Alice
                        # 1        Bob
                        # 2    Charlie
                        # 3      David
                        # Name: Name, dtype: object           Series
                        
print(df[['Name']])     #      Name
                        # 0    Alice
                        # 1      Bob
                        # 2  Charlie
                        # 3    David
                        # DataFrame                         两个中括号返回的是 DataFrame

df[[‘col1’, ‘col2’]]:选择多列,返回 DataFrame。

3 按布尔条件选择

df[df[‘column_name’] > value]:选择满足条件的行。

df[(df[‘Age’] > 25) & (df[‘Score’] > 85)] :and 注意里面布尔条件都要分别用小括号括起来,不然会报错

df[(df[‘Age’] > 25) | (df[‘Score’] > 85)] : or

# 创建一个示例 DataFrame
data = {
   
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Age': [24, 27, 22, 32, 29],
    'Score': [85.5, 88.0, 95.0, 70.5, 80.0]
}
df = pd.DataFrame(data)        #      Name  Age  Score
print(df)                      # 0    Alice   24   85.5
                               # 1      Bob   27   88.0
                               # 2  Charlie   22   95.0
                               # 3    David   32   70.5
                               # 4      Eve   29   80.0

print(df[(df['Age'] > 25) & (df['Score'] > 85)])        #    Name  Age  Score
                                                         # 1   Bob   27   88.0 

4 loc[ ] 与 iloc[ ]进行操作

  • [注]:关于你筛选出来的数据是DataFrame还是Series关键在于你整数数组访问单个时有没有加中括号,没有加就有可能是Series,有就是DataFrame,看下面例子就懂了
  • [注]:其实这个用法记住各种筛选条件可以混合用就是了

(1)loc[ ]

loc:基于标签(名称)的索引,用于按行和列的标签来访问数据。适合于按行/列标签精确选择数据。
初始要筛选的DataFrame

# 创建示例 DataFrame
data = {
   'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [24, 27, 22, 32],
        'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)
df.set_index('Name', inplace=True)
print(df)                            #        Age         City
                                    # Name                      
                                    # Alice     24     New York
                                    # Bob       27  Los Angeles
                                    # Charlie   22     Chicago
                                    # David     32     Houston
基于行标签的选择 — df.loc[‘Alice’] ,df.loc[[‘Alice’]]
df.loc[‘Alice’] — 返回 Series
df.loc[[‘Alice’]] — 返回 DataFrame
df.loc[[‘Bob’, ‘David’]] — 返回 DataFrame ,这种数组的索引方式都可以用

如果你对数组索引单个也加上中括号,那么返回的将是 DataFrame 而不是 Series这个规则是普遍适用的,下面也有

# 按行标签选择
row = df.loc['Alice']               
print(row)                           # Age            24
                                    # City    New York
                                    # Name: Alice, dtype: object                # 单行返回 Series
                                
row2 = df.loc[['Alice']]                # 加上中括号,返回的是 DataFrame了·
print(row2)                         #        Age      City
                                    # Name                   
                                    # Alice     24  New York

df2 = df.loc[['Bob', 'David']]
print(df2)                           #        Age         City
                                    # Name                      
                                    # Bob       27  Los Angeles
                                    # David     32     Houston
  • 选择标签为 ‘Alice’ 的行。
基于行和列标签的选择 — df.loc[‘Alice’, ‘Age’] , df.loc[‘Alice’, [‘Age’, ‘City’]], df.loc[[‘Alice’], [‘Age’, ‘City’]]
df.loc[‘Alice’, [‘Age’, ‘City’]] — 返回Series
df.loc[[‘Alice’], [‘Age’, ‘City’]] — 返回Dataframe

如果你对数组索引单个也加上中括号,那么返回的将是 DataFrame 而不是 Series这个规则是普遍适用的,下面也有

  • 选择标签为 ‘Alice’ 的行和 ‘Age’ 列对应的单元格数据。

  • 选择标签为 ‘Alice’ 的行以及 ‘Age’ 和 ‘City’ 列。

# 选择特定行和列
value = df.loc['Alice', 'Age']       
print(value)                         # 24                                    # 如果只选择一行一列,返回的是标量

# 选择特定行的多列  --- 返回 Series
subset = df.loc['Alice', ['Age', 'City']] 
print(subset)                        # Age          24
                                    # City    New York
                                    # Name: Alice, dtype: object              # 注意:返回的是 Series
                     
# 选择特定行的多列  --- 返回 DataFrame
subset2 = df.loc[['Alice'], ['Age', 'City']] 
print(subset2)                       #        Age      City
                                    # Name                  
                                    # Alice     24  New York                      
# 如果你对数组索引单个也加上中括号,那么返回的将是 DataFrame 而不是 Series
基于行和列范围的选择(切片) — df.loc[‘Alice’:‘Charlie’, ‘Age’:‘City’]
# 选择行标签在一定范围内的多行和多列
subset = df.loc['Alice':'Charlie', 'Age':'City']
print(subset)                        #          Age         City
                                    # Name                      
                                    # Alice     24     New York
                                    # Bob       27  Los Angeles
                                    # Charlie   22     Chicago
  • 选择行标签从 ‘Alice’ 到 ‘Charlie’(包括)的行,以及从 ‘Age’ 到 ‘City’ 的列。
基于布尔条件的选择 ---- df.loc[df[‘Age’] > 25] , df.loc[df[‘Age’] > 25, [‘City’]]
  • 选择 ‘Age’ 列大于 25 的所有行。
  • 选择 ‘Age’ 列大于 25 的行,并只保留 ‘City’ 列。
subset = df.loc[df['Age'] > 25]
print(subset)                        #        Age         City
                                    # Name                      
                                    # Bob       27  Los Angeles
                                    # David     32     Houston
                                    
subset2 = df.loc[df['Age'] > 25, ['City']]
print(subset2)                      #                City
                                    # Name              
                                    # Bob   Los Angeles
                                    # David     Houston
更新操作
# 更新特定单元格的值
df.loc['Alice', 'Age'] = 30

# 更新满足条件的行的特定列
df.loc[df['Age'] > 25, 'City'] = 'San Francisco'
  • 更新 ‘Alice’ 行的 ‘Age’ 列值为 30。
  • 将 ‘Age’ 列大于 25 的所有行的 ‘City’ 列值更新为 ‘San Francisco’。

(2)iloc[ ] 的使用方法

iloc 用于通过整数位置来选择数据,类似于 NumPy 的数组索引,支持按行、按列或行列组合进行选择。iloc 方法通常有以下几种用法:
创建示例 dataframe

# 创建示例 DataFrame
data = {
   'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [24, 27, 22, 32],
        'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)
df.set_index('Name', inplace=True)
print(df)                            #        Age         City
                                    # Name                      
                                    # Alice     24     New York
                                    # Bob       27  Los Angeles
                                    # Charlie   22     Chicago
                                    # David     32     Houston
基于行位置的选择
df.iloc[0]
df.iloc[[0]]
df.iloc[[0,2]]
# 按行位置选择
print(df.iloc[0])             #  Age          24
                              # City    New York
                              # Name: Alice, dtype: object               # Series
                              
print(df.iloc[[0]])           #        Age      City
                              # Name                  
                              # Alice    24  New York                    # DataFrame          
                              
print(df.iloc[[0,2]])         #         Age      City
                              # Name                  
                              # Alice    24  New York
                              # Charlie  22   Chicago
基于行和列位置的选择
df.iloc[0,1] ---- 返回一个标量
df.iloc[0,[0,1]] — 返回series
df.iloc[[0],[0,1]] ---- 返回一个dataframe
print(df.iloc[0,1])                # New York
print(df.iloc[0,0])                # 24

def big_countries(world: pd.DataFrame) -> pd.DataFrame是一个在pandas中定义的函数,它的参数是一个名为world的DataFrame。该函数的目的是过滤出符合条件的国家,并返回一个新的DataFrame,包含'name'、'population'和'area'这三列的数据。通过使用条件判断,将满足条件的行筛选出来,然后再选择所需的列返回。具体的实现方法有两种,一种是使用pandas写法,另一种是使用行过滤方法。在这两种方法中,都使用了与运算符(|)和比较运算符(>=)来对DataFrame进行条件判断,以筛选出符合条件的行。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【Leetcode 30天Pandas挑战】学习记录 上](https://blog.csdn.net/cwtnice/article/details/132065786)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Pandas【条件筛选】](https://blog.csdn.net/Henry_Zhao10/article/details/132050959)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值