数轴上的动点问题难不难?难!!“书上有路勤为径,学海无涯苦作舟”,再难的题目都有解题方法。笔者继续就浙教版七年级数学---数轴上的动点问题变型题进行探究,同样分别用几何图形和代数方法解数轴上的动点问题。
如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC面积为12. OC边长为3
⑴数轴上点A表示的数是----------------------。
⑵将长方形OABC沿OA所在直线水平移动,移动后的长方形记为O'A'B'C'.若移动后的长方形O'A'B'C'与原长方形OABC重叠部分的面积恰好等于原长方形OABC的面积的一半时,则数轴上点A'表示的数是多少?

解:⑴.由题意得:
A表示的数为:4
⑵问移动到A'在数轴上是什么位置的时候,长方形O'A'B'C'与原长方形OABC重叠部分的面积恰好等于原长方形OABC的面积的一半
一、利用几何画板来演示,长方形的移动变化(如图重合时的情形):

下面我们来移动长方形,使得重叠部分C'O'AB的面积恰好等于原长方形OABC的面积的一半(如图3):

对比移动前后图,我们发现面积:C'O'AB=1/2OABC 时,OA'由4移动到6的位置,这样我们利用图形就解得A'表示的数为6.
二、下面笔者用代数的方法解题:
解:设A'表示的数为x,由题意得:
∵0A=4,OC=3
∴[4-(x-4)]*OC=6
解之得:
x=6
答:略
此题用方程代数解题,主要考察学生空间想象能力,
第一步:OA'-OA,
第二步:OA-(OA'-OA)
第三步:【OA-(OA'-OA)】*OC
最后:解方程。
探究变型题二(供读者自行解答):
长方形OABC的边OA在数轴上,O为原点,长方形OABC面积为12. OC边长为3。若D为线段AA' 的中点,点E在线段OO'上,且OE=1/3OO',求当长方形OABC移动的距离为多少时,D、E两点到原点O的距离相等?
PS:
码字不易,欢迎读者在评论区进行评论,您的建议和评论对我创作大于裨益,欢迎转发与关注,谢谢!----爱好中草药的数学老师。