高斯光束纵向传播matlab,问题交流一:高斯光束

From Wikipedia, the free encyclopedia

In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric field and intensity (irradiance) distributions are well approximated by Gaussian functions. Many lasers emit beams that approximate a Gaussian profile, in which case the laser is said to be operating on the fundamental transverse mode, or "TEM00 mode" of the laser's optical resonator. When refracted by a diffraction-limited lens, a Gaussian beam is transformed into another Gaussian beam (characterized by a different set of parameters), which explains why it is a convenient, widespread model in laser optics.250px-Gaussian_beam_w40mm_lambda30mm.png

magnify-clip.png

Instantaneous intensity of a Gaussian beam.

250px-Laser_gaussian_profile.svg.png

magnify-clip.png

The top portion of the diagram shows the two-dimensional intensity profile of a Gaussian beam that is propagating out of the page. The blue curve, below, is a plot of the electric field amplitude as a function of distance from the center of the beam. The black curve is the corresponding intensity function.

250px-Green_laser_pointer_TEM00_profile.JPG

magnify-clip.png

A 5 mW green laser pointer beam profile, showing the TEM00 profile

The mathematical function that describes the Gaussian beam is a solution to the paraxial form of the Helmholtz equation. The solution, in the form of a Gaussian function, represents the complex amplitude of the beam's electric field. The electric field and magnetic field together propagate as an electromagnetic wave. A description of just one of the two fields is sufficient to describe the properties of the beam.

The behavior of the field of a Gaussian beam as it propagates is described by a few parameters such as the spot size, the radius of curvature, and the Gouy phase.[1]

Other solutions to the paraxial form of the Helmholtz equation exist. Solving the equation in Cartesian coordinates leads to a family of solutions known as the Hermite–Gaussian modes, while solving the equation in cylindrical coordinates leads to the Laguerre–Gaussian modes.[2] For both families, the lowest-order solution describes a Gaussian beam, while higher-order solutions describe higher-order transverse modes in an optical resonator.Contents [hide]

1 Mathematical form

2 Beam parameters

2.1 Beam width or spot size

2.2 Rayleigh range and confocal parameter

2.3 Radius of curvature

2.4 Beam divergence

2.5 Gouy phase

2.6 Complex beam parameter

3 Power and intensity

3.1 Power through an aperture

3.2 Peak and average intensity

4 Derivation

5 Higher-order modes

5.1 Hermite-Gaussian modes

5.2 Laguerre-Gaussian modes

5.3 Ince-Gaussian modes

5.4 Hypergeometric-Gaussian modes

6 See also

7 Notes

8 References[edit]Mathematical form

The Gaussian beam is a transverse electromagnetic (TEM) mode.[3] A mathematical expression for its complex electric field amplitude can be found by solving the paraxial Helmholtz equation, yielding[1]

613564117fb5c474aba2c230bca46cba.png

where[1]

4b43b0aee35624cd95b910189b3dc231.png is the radial distance from the center axis of the beam,

fbade9e36a3f36d3d676c1b808451dd7.png is the axial distance from the beam's narrowest point (the "waist"),

865c0c0b4ab0e063e5caa3387c1a8741.png is the imaginary unit (for which

685245741281622a3f11315dfd81cd98.png),

9adb935e7b04e3101a8258702aba057a.png is the wave number (in radians per meter),

a0cdac2f1341be85e8ccdf663ca6eb80.png,

5822923ac6e5dde61e7b3bf79ce3a4d9.png is the radius at which the field amplitude and intensity drop to 1/e and 1/e2 of their axial values, respectively,

9eff5bb750a7eeb0c97a5e5d5dd5177e.png is the waist size,

1ba9a7cb82e2a8ce69bcf7d135fc5515.png is the radius of curvature of the beam's wavefronts, and

1c8c4bd7b76e9b4ac04011be85e3fad3.png is the Gouy phase shift, an extra contribution to the phase that is seen in Gaussian beams.

Additionally, the field has a time dependence factor

d564836fc7a0f405399d005faac0b418.png that has been suppressed in the above expression.

The corresponding time-averaged intensity (or irradiance) distribution is

c24c72a65735bcee491f6b84cce8a1c9.png

where

5e927c57cd7cf870bc357546118db4ed.png is the intensity at the center of the beam at its waist. The constant

d770ed7061d0265e8cac05d7418a76e6.png is the characteristic impedance of the medium in which the beam is propagating. For free space,

f248b59a6f0142e85fadf47a9bacbc19.png.[edit]Beam parameters

The geometry and behavior of a Gaussian beam are governed by a set of beam parameters, which are defined in the following sections.[edit]Beam width or spot sizeSee also: Beam diameter

350px-GaussianBeamWaist.svg.png

magnify-clip.png

Gaussian beam width w(z) as a function of the axial distance z. w0: beam waist; b: depth of focus; zR: Rayleigh range;

78fb652a2e06bbad99d4b54531029c40.png: total angular spread

For a Gaussian beam propagating in free space, the spot size (radius) w(z) will be at a minimum value w0 at one place along the beam axis, known as thebeam waist. For a beam of wavelength λ at a distance z along the beam from the beam waist, the variation of the spot size is given by[1]

254ca016952b78f3597feda00adbb4f6.png

where the origin of the z-axis is defined, without loss of generality, to coincide with the beam waist, and where[1]

e58a707d1ccf4ed6cefac660633038a8.png

is called the Rayleigh range.[edit]Rayleigh range and confocal parameter

At a distance from the waist equal to the Rayleigh range zR, the width w of the beam is[1]

94a69d83a30e5ccac952343dc21ea04d.png

The distance between these two points is called the confocal parameter or depth of focus of the beam:

619a133ca2edfa94c53f3574156b6723.png[edit]Radius of curvature

R(z) is the radius of curvature of the wavefronts comprising the beam. Its value as a function of position is[1]

6e956b0c5cd44d8afae35480cd0f39c7.png[edit]Beam divergence

The parameter

5822923ac6e5dde61e7b3bf79ce3a4d9.png increases linearly with

fbade9e36a3f36d3d676c1b808451dd7.png for

8bac08f47c85562de18fc8a57e392457.png. This means that far from the waist, the beam is cone-shaped. The angle between the straight line

071d677d2533ad8e498c0f456e22ded4.png and the central axis of the beam (

2c3db681686c1b080e21688bf57b256a.png) is called the divergence of the beam. It is given by[1]

6ff5ee0daaf49d844690eb2eef9aeb0e.png

The total angular spread of the beam far from the waist is then given by

61ca492ff37c894f00e626f680320165.png

Because the divergence is inversely proportional to the spot size, a Gaussian beam that is focused to a small spot spreads out rapidly as it propagates away from that spot. To keep a laser beam very well collimated, it must have a large diameter. This relationship between beam width and divergence is due to diffraction. Non-Gaussian beams also exhibit this effect, but a Gaussian beam is a special case where the product of width and divergence is the smallest possible.

Since the gaussian beam model uses the paraxial approximation, it fails when wavefronts are tilted by more than about 30° from the direction of propagation.[4] From the above expression for divergence, this means the Gaussian beam model is valid only for beams with waists larger than about

2dc9819341b5e4389b70ebd015020ec8.png.

Laser beam quality is quantified by the beam parameter product (BPP). For a Gaussian beam, the BPP is the product of the beam's divergence and waist size

5719b5352cc95d89087235ef093c0ea0.png. The BPP of a real beam is obtained by measuring the beam's minimum diameter and far-field divergence, and taking their product. The ratio of the BPP of the real beam to that of an ideal Gaussian beam at the same wavelength is known as M2 ("M squared"). The M2 for a Gaussian beam is one. All real laser beams have M2 values greater than one, although very high quality beams can have values very close to one.[edit]Gouy phase

The longitudinal phase delay or Gouy phase of the beam is[1]

2f75270fbbbcc289d8f4fb8b9b0c0961.png

The Gouy phase indicates that as a Gaussian beam passes through a focus, it acquires an additional phase shift of π, in addition to the usual

b59f38278447c39146a0138554f10ccd.png phase shift that would be expected from a plane wave.[1][edit]Complex beam parameterMain article: Complex beam parameter

Information about the spot size and radius of curvature of a Gaussian beam can be encoded in the complex beam parameter,

a5827c143f7d49ac84e4a10aac2b490c.png:[5]

a11ca6859149591cdaad09eac05336e2.png

The reciprocal

538cec36bd61adb42f59cb0d52144cf2.png shows the relationship between

a5827c143f7d49ac84e4a10aac2b490c.png,

5822923ac6e5dde61e7b3bf79ce3a4d9.png, and

1ba9a7cb82e2a8ce69bcf7d135fc5515.png explicitly:[5]

6c6aa92ee4a80bf321e315373b043c73.png

The complex beam parameter plays a key role in the analysis of gaussian beam propagation, and especially in the analysis of optical resonator cavities using ray transfer matrices.

In terms of the complex beam parameter

2af01e05e8e89ab7b4332b94a83f6e35.png, a Gaussian field with one transverse dimension is proportional to

ceba8be799315c52e129ad56c84ea9b3.png

In two dimensions one can write the potentially elliptical or astigmatic beam as the product

d6414b72780a9a6be1db797be96682bb.png

which for the common case of circular symmetry where

e86d682165c2e2dfd87ad9d2ac48a2d4.png and

96597b64664f07a4c5cd937756976fa1.png yields[6]

9b8ecbd98bdf81e7f4ce1f4ae54d67c5.png[edit]Power and intensity[edit]Power through an aperture

The power P passing through a circle of radius r in the transverse plane at position z is

2579d41377cd504505c521d40bb4a201.png

where

0f51373e5e1d773e4db8360b5a229abf.png

is the total power transmitted by the beam.

For a circle of radius

577e5e80e06b51235ec6da3bc2cdbb58.png, the fraction of power transmitted through the circle is

4a27870d06ed71086436de60f2e70bcb.png

Similarly, about 95 percent of the beam's power will flow through a circle of radius

7af22f451d6d164b60e2b1505f501373.png.[edit]Peak and average intensity

The peak intensity at an axial distance

fbade9e36a3f36d3d676c1b808451dd7.png from the beam waist is calculated using L'Hôpital's rule as the limit of the enclosed power within a circle of radius

4b43b0aee35624cd95b910189b3dc231.png, divided by the area of the circle

480e925c512aa8cef79f8162a0fef072.png:

b04fe4abc878b8ca997a6387281f9b8b.png

The peak intensity is thus exactly twice the average intensity, obtained by dividing the total power by the area within the radius

5822923ac6e5dde61e7b3bf79ce3a4d9.png.[edit]Derivation

The Gaussian beam formalism begins with the wave equation for an electromagnetic field in free space or in a homogeneous dielectric medium:[7]

9968e3cb7e2ec3b6e5af6caef0ebdacb.png

where

4c614360da93c0a041b22e537de151eb.png may stand for any one of the six field components

5af785ffbd54dee2c75984d020eb3982.png,

a54d12e05849be8b86182fef5ac78023.png,

dde3f3516d6b7788a11592d78607d769.png,

cac8400ea2230197e45b86b1d5a8312c.png,

6e853a2a2593b3a0e2d44b2b35b76e31.png, or

58bb7fd1bcaa549ed149c646d5b044b5.png. The Gaussian beam formalism proceeds by writing down a solution of the form[7]

f34b0d4e12cef096384a9d214c4e84b5.png

where it is assumed that the beam is sufficiently collimated along the

fbade9e36a3f36d3d676c1b808451dd7.png axis that

b65d05264d15088bac0757b0cdd017f6.png may be neglected. Substituting this solution into the wave equation above yields the paraxial approximation to the wave equation:[7]

013c10aec5ad009df8af58895d3f6878.png

Solving this differential equation yields an infinite set of functions, of which the Gaussian beam is the lowest-order solution or mode.[edit]Higher-order modesSee also: Transverse mode

Gaussian beams are just one possible solution to the paraxial wave equation. Various other sets of orthogonal solutions are used for modelling laser beams. In the general case, if a complete basis set of solutions is chosen, any real laser beam can be described as a superposition of solutions from this set. The design of the laser determines which basis set of solutions is most useful. In some cases the output of a laser may closely approximate a single higher-order mode. Hermite-Gaussian modes are particularly common, since many laser systems have Cartesian reflection symmetry in the plane perpendicular to the beam's propagation direction.[edit]Hermite-Gaussian modes250px-Hermite-gaussian.png

magnify-clip.png

Twelve Hermite-Gaussian modes

Hermite-Gaussian modes are a convenient description for the output of lasers whose cavity design is not radially symmetric, but rather has a distinction between horizontal and vertical. In terms of the previously defined complex

7694f4a66316e53c8cdd9d9954bd611d.png parameter, the amplitude distribution in the

5a98d5940fcc69f8512b27e9946cceda.png-plane is proportional to

0b7b4fd3eb4c5576ad24038550f0a178.png

where the function

d7a0cd92e6ce725870ef16f5aaa1b3a1.png is the Hermite polynomial of order

7b8b965ad4bca0e41ab51de7b31363a1.png (physicists' form, i.e.

43a691f0e4859df5b1c16c975dcbae8a.png), and the asterisk indicates complex conjugation. For the case

0e1176caf07d2ed21c19fc899be7e7df.pngthe equation yields a Gaussian transverse distribution.

For two-dimensional rectangular coordinates one constructs a function

a9b2bcd372850b816cf7cab7573ce444.png, where

5f3d7d00eb134390d4e038167a17e173.png has the same form as

41b334a6faff404c0c6ae2e75e7fa982.png. Mathematically this property is due to the separation of variables applied to the paraxial Helmholtz equation for Cartesian coordinates.[8]

Hermite-Gaussian modes are typically designated "TEMmn", where m and n are the polynomial indices in the x and y directions. A Gaussian beam is thus TEM00.[edit]Laguerre-Gaussian modes330px-LG-wiki.jpg

magnify-clip.png

The intensity profiles of twelve Laguerre-Gaussian modes

If the problem is cylindrically symmetric, the natural solutions of the paraxial wave equation are Laguerre-Gaussian modes. They are written in cylindrical coordinates using Laguerre polynomials

8159b6d08e1d878d1d6a9b43c461f6d6.png

where

c4dd9fb8fe4a37c122afad6ebbae394f.png are the generalized Laguerre polynomials, the radial index

d1ee962152dc1bc301a0acb2b11107d9.png and the azimuthal index is

2db95e8e1a9267b7a1188556b2013b33.png.

d7a5bed7570629a8f6bcce5968b03c6c.png is an appropriate normalization constant;

5822923ac6e5dde61e7b3bf79ce3a4d9.png,

1ba9a7cb82e2a8ce69bcf7d135fc5515.png and

1c8c4bd7b76e9b4ac04011be85e3fad3.png are beam parameters defined above.[edit]Ince-Gaussian modes

In elliptic coordinates, one can write the higher-order modes using Ince polynomials. The even and odd Ince-Gaussian modes are given by [9]

47ca34e20176ba88aec6d22f4aa917c8.png

where

58fb07e3d4fa708afd0734aab363fd36.png and

7174cbd6aeaaa56e37102b72386bb2b9.png are the radial and angular elliptic coordinates defined by

41393a80cab4fb76fee23a105c41d6f2.png

71602eb53cdbd260cafb1fb48b9480ce.png

fc29ff2227db2de882bc3830140b88e8.png are the even Ince polynomials of order

83878c91171338902e0fe0fb97a8c47a.png and degree

6f8f57715090da2632453988d9a1501b.png,

c691dc52cc1ad756972d4629934d37fd.png is the ellipticity parameter, and

721dc91071d999b139b3ae3c72904f48.png is the Gouy phase. The Hermite-Gaussian and Laguerre-Gaussian modes are a special case of the Ince-Gaussian modes for

e7d5398352349dc5974ab9175a98a8c5.png and

ad4fd9b2e3bee723871033a627d68093.png respectively.[edit]Hypergeometric-Gaussian modes

There is another important class of paraxial wave modes in polar coordinates in which the complex amplitude is proportional to a confluent hypergeometric function.

These modes have a singular phase profile and are eigenfunctions of the photon orbital angular momentum. The intensity profile is characterized by a single brilliant ring with a singularity at its center, where the field amplitude vanishes.[10]

b167cea2285743adf994f57591b72ee4.png

where

6f8f57715090da2632453988d9a1501b.png is integer,

b597d4bb3e171c8f7cb3754d0e230218.png is real valued,

38286620918d94bf96b3ca055380f41b.png is the gamma function and

3bb26c47991afa0ace388ffaa75d0555.png is a confluent hypergeometric function.

Some subfamilies of hypergeometric-Gaussian (HyGG) modes can be listed as the modified Bessel-Gaussian modes, the modified exponential Gaussian modes, and the modified Laguerre–Gaussian modes.

The set of hypergeometric-Gaussian modes is overcomplete and is not an orthogonal set of modes. In spite of its complicated field profile, HyGG modes have a very simple profile at the pupil plane:

57988a04f26c6b423f527759aa7399c7.png

See Optical vortex, which explains that the outcoming wave from a pitch-fork hologram is a sub-family of HyGG modes. The HyGG profile while beam propagates along

320c43589fbcdde1af041ee358550ac5.png has a dramatic change and it is not a stable mode below the Rayleigh range.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值