题目大意:给一个有向图,求有多少个点,除自身外的所有点都可以到达。
思路:反向建边然后n次bfs Tarjan缩点,得到一颗树,在树上建边(块与块之间),找到没有出度的块,如果有多个,则不可能有满足条件的点,答案为0,有一个这样的块时,里面的顶点数即为答案(所有其他块里的点都可以到这个块,这个块内的又是强连通的,所有点都可以到这个块里的任意点)
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;
const int M=5e4+10;
int n,m,pre[M],lowlink[M],sccno[M],dfs_clock,scc_cnt,numscc[M];
stack<int> S;
vector<int> G[M],SCC[M];
void dfs(int u){
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if(lowlink[u]==pre[u]){
scc_cnt++;
while(1){
int x=S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
}
void find_scc(){
dfs_clock=scc_cnt=0;
memset(sccno,0,sizeof(sccno));
memset(pre,0,sizeof(pre));
for(int i=0;i<n;i++)
if(!pre[i])
dfs(i);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
int x,y;
scanf("%d%d",&x,&y);
x--,y--;
G[x].push_back(y);
}
find_scc();//紫薯里的代码
for(int i=0;i<n;i++)
for(int j=0;j<G[i].size();j++)
if(sccno[i]!=sccno[G[i][j]]){
SCC[sccno[i]].push_back(sccno[G[i][j]]);//块与块之间建边
}
for(int i=0;i<n;i++){
numscc[sccno[i]]++;//统计每个块内有多少个点
}
int ans=0,cnt0=0;
for(int i=1;i<=scc_cnt;i++)
if(SCC[i].size()==0){
cnt0++;
if(cnt0==2)//有多个出度为0的块
return printf("0\n")*0;
ans=numscc[i];
}
printf("%d\n",ans);
return 0;
}