POJ 2186(Tarjan缩点)

题目大意:给一个有向图,求有多少个点,除自身外的所有点都可以到达。
思路:反向建边然后n次bfs Tarjan缩点,得到一颗树,在树上建边(块与块之间),找到没有出度的块,如果有多个,则不可能有满足条件的点,答案为0,有一个这样的块时,里面的顶点数即为答案(所有其他块里的点都可以到这个块,这个块内的又是强连通的,所有点都可以到这个块里的任意点)
代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;
const int M=5e4+10;
int n,m,pre[M],lowlink[M],sccno[M],dfs_clock,scc_cnt,numscc[M];
stack<int> S;
vector<int> G[M],SCC[M];
void dfs(int u){
	pre[u]=lowlink[u]=++dfs_clock;
	S.push(u);
	for(int i=0;i<G[u].size();i++){
		int v=G[u][i];
		if(!pre[v]){
			dfs(v);
			lowlink[u]=min(lowlink[u],lowlink[v]);
		}
		else if(!sccno[v]){
			lowlink[u]=min(lowlink[u],pre[v]);
		}
	}
	if(lowlink[u]==pre[u]){
		scc_cnt++;
		while(1){
			int x=S.top();S.pop();
			sccno[x]=scc_cnt;
			if(x==u)
				break;
		}
	}
}
void find_scc(){
	dfs_clock=scc_cnt=0;
	memset(sccno,0,sizeof(sccno));
	memset(pre,0,sizeof(pre));
	for(int i=0;i<n;i++)
		if(!pre[i])
			dfs(i);
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;i++){
		int x,y;
		scanf("%d%d",&x,&y);
		x--,y--;
		G[x].push_back(y);
	}
	find_scc();//紫薯里的代码
	for(int i=0;i<n;i++)
		for(int j=0;j<G[i].size();j++)
			if(sccno[i]!=sccno[G[i][j]]){
				SCC[sccno[i]].push_back(sccno[G[i][j]]);//块与块之间建边
			}
	for(int i=0;i<n;i++){
		numscc[sccno[i]]++;//统计每个块内有多少个点
	}
	int ans=0,cnt0=0;
	for(int i=1;i<=scc_cnt;i++)
		if(SCC[i].size()==0){
			cnt0++;
			if(cnt0==2)//有多个出度为0的块
				return printf("0\n")*0;
			ans=numscc[i];
		}
	printf("%d\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值