kmeans中的k的含义_K-Means聚类

K-means聚类是一种无监督学习算法,用于将数据分为K个聚类。通过选择合适的质心数量(k),算法会迭代地重新计算质心并分配数据点,直到聚类稳定。肘部法则常用于确定最优的k值。在Iris数据集上应用K-means,发现k=3时效果最佳,通过绘制聚类点和质心有助于直观理解聚类结果。
摘要由CSDN通过智能技术生成

k均值聚类算法属于机器学习的无监督学习类。提供给无监督算法的数据没有标记,即只给出输入变量(x)。

要理解K-means聚类的真正含义,我们可以从单词开始:

  1. 聚类(Cluster) - 指一组紧密排列或紧密相连的类似事物。
  2. 均值(Means) - 指数据的平均值
  3. K - 指聚类的数量。

K-means聚类如何工作?

  1. 第一步是选择质心数。
ace0c111c65361ced6f6d9b061f5aed5.png

如果给出上面的图像并要求决定将数据分成多少个聚类,那么显而易见的答案就是3。但是机器如何通过算法来决定呢?

肘部法则:您可能会想到的最基本的方法是试错法,通常称为肘部法。您可以尝试不同的k值并绘制聚类平方和(wcss)的平均值,即距各自质心相对于k的平均距离。理想的k值位于图的肘部。

a95089bb1cd88d0cd3d6891c8449eeeb.png

2.找到k后,需要定位它们。换句话说,您需要找到k个质心的值。

最简单的方法是随机放置质心,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值