MATLAB多体动力学系统开发实战指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:QuirkmultibodyDynamicsPackage是一款在MATLAB环境下构建和分析复杂多体系统的专业工具包。它通过 mBody.m body.m joint.m 等类文件,以及 sensor.m force.m 等支持类,使得用户能够定义刚体属性、建立机械系统模型和进行动力学仿真。工具包内的多个示例文件如 demo_TwoStageLinkage.m 等,进一步展示了如何应用这些类来模拟多体系统。工具包非常适合学术研究和工程设计,能够提升对多体系统问题的理解和解决能力。

1. MATLAB中的多体动力学系统建模

在当今的工程设计和科学研究中,多体动力学系统建模已成为一个不可或缺的环节。在MATLAB环境中实现此类建模,可以为设计者提供强大的仿真工具,以预测和分析机械系统的复杂动态行为。

1.1 建模基础和重要性

1.1.1 动力学建模的定义

多体动力学系统建模是通过建立数学模型来描述系统中各物体的运动规律和物体间相互作用的过程。这些模型需要能够准确地反映出系统的动态特性,从而进行有效的仿真分析。

1.1.2 MATLAB的仿真优势

MATLAB作为一款强大的数值计算和仿真软件,提供了丰富的工具箱来支持复杂系统建模。它的集成开发环境和高级语言特性,使得模型的创建、仿真和结果分析变得更为高效和直观。

1.1.3 建模在工程中的应用

多体动力学模型在汽车、航空、机器人技术等多个领域发挥着重要作用。通过建模和仿真,工程师能够在产品投入实际制造之前,对潜在的设计问题进行识别和优化。

随着工程需求的日益复杂,MATLAB中的多体动力学建模技术变得越来越重要,为工程领域提供了一种模拟现实世界动态系统的有效途径。在接下来的章节中,我们将进一步探讨如何使用MATLAB及相关的工具包来实现多体动力学系统的建模和分析。

2. 多体系统分析工具包QuirkmultibodyDynamicsPackage

2.1 QuirkmultibodyDynamicsPackage的安装与配置

2.1.1 工具包的下载和安装流程

对于初次使用QuirkmultibodyDynamicsPackage的用户来说,首先需要下载工具包并安装到本地MATLAB环境中。以下步骤将指导用户完成整个安装过程。

  1. 访问QuirkmultibodyDynamicsPackage的官方网站或相关代码托管平台,获取最新的安装包。
  2. 根据用户所使用的MATLAB版本,选择合适的安装文件进行下载。通常,这些安装包会以.mltbx(MATLAB工具箱文件)或.zip压缩文件的形式提供。
  3. 打开MATLAB并进入“添加-ons”界面。可以通过在MATLAB命令窗口输入 matlab.addons.install 或点击工具栏上的“Add-ons”图标实现。
  4. 选择“从文件安装”,然后在弹出的文件浏览器中选择下载的安装文件,进行安装。
  5. MATLAB将会自动引导安装过程,可能包括确认许可协议、选择安装位置等步骤。

安装完成后,QuirkmultibodyDynamicsPackage将被集成到MATLAB路径中,并且在MATLAB的“Add-ons”界面中可见,表示安装成功。

2.1.2 配置环境和测试工具包

在安装完成后,用户需要进行环境配置,以确保工具包能够正常运行。以下是如何配置和测试QuirkmultibodyDynamicsPackage的步骤:

  1. 打开MATLAB命令窗口,输入以下命令以检查工具包是否已正确添加到MATLAB路径中: matlab ver 这将列出所有已安装的工具箱,确认QuirkmultibodyDynamicsPackage出现在列表中。

  2. 对工具包进行基础测试,以验证是否安装成功。大多数工具包会提供示例脚本或函数,用户可以运行这些示例来检查工具包的功能。对于QuirkmultibodyDynamicsPackage,可以运行以下命令: matlab QuirkmultibodyDynamicsPackage_example 这个命令将执行一个预定义的简单多体系统仿真案例。如果工具包安装和配置正确,用户将能够看到仿真结果的图形输出。

  3. 如果在测试过程中遇到问题,可以查看工具包附带的文档,通常会在安装目录下的“doc”文件夹中。此外,工具包可能还提供了官方论坛或技术支持链接,用户可以通过这些途径寻求帮助。

通过以上步骤,用户可以完成QuirkmultibodyDynamicsPackage的安装与配置,并确保其在MATLAB环境中正常工作。下面我们将介绍该工具包的基本功能和使用。

2.2 工具包的基本功能和使用

2.2.1 功能概述与用户界面介绍

QuirkmultibodyDynamicsPackage为多体系统仿真提供了丰富的功能,包括但不限于刚体动力学建模、关节定义、系统约束、动态仿真、结果可视化等。为了便于用户理解和使用,本小节将介绍工具包的核心功能及其对应的用户界面。

该工具包提供了一个集成的用户界面,允许用户通过图形化操作来定义多体系统。用户可以使用界面中的拖放功能来添加刚体、定义关节和施加约束。在界面上,用户还可以设置仿真参数,如时间跨度、步长、积分方法等。

除此之外,QuirkmultibodyDynamicsPackage的命令行接口也非常强大。对于高级用户或那些希望通过编程脚本来控制仿真的用户来说,该接口提供了一套完整的函数和类来实现复杂的仿真任务。

2.2.2 工具包的参数设置与运行模式

在使用QuirkmultibodyDynamicsPackage进行仿真之前,用户需要对仿真参数进行设置。这些参数决定了仿真的精确度、计算速度和稳定性。以下是一些核心参数的设置方法:

  1. 时间参数:包括仿真的开始时间、结束时间以及数据采样频率。用户可以通过以下命令设置这些参数: matlab QuirkmultibodyDynamicsPackage.setSimulationTime(0, 10, 0.01); 这将设置仿真时间为从0到10秒,每0.01秒采样一次。

  2. 积分器参数:QuirkmultibodyDynamicsPackage支持多种数值积分方法,用户可以根据问题的特性选择合适的积分器。例如,可以设置为“ode45”,一个常用的四/五阶Runge-Kutta方法: matlab QuirkmultibodyDynamicsPackage.setIntegrator('ode45');

  3. 求解器参数:对于刚性和非刚性系统的求解,QuirkmultibodyDynamicsPackage提供了不同的求解器。用户需要根据自己的模型特点选择合适的求解器。

在参数设置完成后,用户可以启动仿真,并在不同的运行模式下查看结果。QuirkmultibodyDynamicsPackage支持交互式运行和批处理运行两种模式。

  1. 交互式运行模式:用户可以在仿真过程中实时监控和调整参数,观察仿真进程。在MATLAB命令行中输入以下命令启动交互式模式: matlab QuirkmultibodyDynamicsPackage.runInteractive();

  2. 批处理运行模式:适合于需要多次运行仿真进行参数扫描和优化的情况。在MATLAB命令行中输入以下命令启动批处理模式: matlab QuirkmultibodyDynamicsPackage.runBatch('results.mat'); 这将会把仿真结果保存到指定的文件中。

QuirkmultibodyDynamicsPackage的参数设置和运行模式为用户提供了灵活的仿真体验,使得用户可以针对自己的需求进行定制。下面我们将介绍QuirkmultibodyDynamicsPackage的高级特性和如何进行扩展。

2.3 工具包的高级特性

2.3.1 扩展模块和自定义功能

QuirkmultibodyDynamicsPackage不仅提供了丰富的标准功能,还支持通过扩展模块来增加新的功能。用户可以根据自己的需求开发自定义模块,以实现特定的仿真任务或模型。

为了开发自定义模块,用户需要熟悉QuirkmultibodyDynamicsPackage的内部结构以及MATLAB的面向对象编程概念。自定义模块通常是作为工具包的插件来实现的,因此需要继承工具包中已有的基类,并重写相应的函数以定义新的行为。

QuirkmultibodyDynamicsPackage的开发团队也提供了开发文档和示例代码,以帮助用户了解如何创建和集成扩展模块。在自定义模块完成后,用户可以通过工具包提供的接口将其添加到现有的系统中,就像使用内置功能一样。

2.3.2 工具包的兼容性和升级指南

随着MATLAB版本的更新和新的技术要求,QuirkmultibodyDynamicsPackage也需要定期进行升级以保持兼容性。本小节将提供升级指南以及如何确保工具包与新***B版本兼容的建议。

在升级之前,用户需要首先检查官方发布的升级日志,了解升级内容和变更记录。升级日志通常会指出新版本中添加的特性、修复的问题以及任何向后不兼容的变更。

用户应该按照官方指南进行升级操作。在大多数情况下,升级操作非常简单,只需要重新下载并安装最新版本的工具包即可。如果在升级过程中遇到问题,可以参考以下步骤:

  1. 检查并备份现有的工具包文件夹,以防需要回滚到旧版本。
  2. 解压新版本的安装包到一个临时文件夹。
  3. 执行安装程序,根据提示将新版本覆盖到旧版本的位置。
  4. 如果出现兼容性问题,尝试运行工具包提供的兼容性脚本或查看是否需要更新用户自定义代码。

通过遵循上述步骤,用户可以确保QuirkmultibodyDynamicsPackage在新环境中的稳定运行,并且能够利用最新版本中的所有改进和新特性。下面我们将转向第三章,介绍刚体(mBody)与机械系统模型构建的相关内容。

3. 刚体(mBody)与机械系统模型构建

刚体(mBody)是机械系统模型中最基本的组件之一,它代表在运动过程中形变可以忽略不计的物体。在多体动力学系统中,刚体的精确建模对于预测整个系统的动态行为至关重要。本章将详细介绍刚体模型的定义、参数以及在机械系统模型构建中的应用。

3.1 刚体模型的定义与参数

3.1.1 刚体的几何描述和质量特性

在多体动力学系统中,刚体的几何描述通常需要包括其形状、尺寸以及质量分布等信息。对于简单形状如球体、圆柱体或立方体等,可以使用简化的质量特性参数如质量、质心位置和转动惯量来描述。对于更复杂的形状,通常需要通过CAD软件进行三维建模,并通过有限元分析(如ANSYS)来计算其质量特性。

在MATLAB环境中,可以通过定义一个包含刚体属性的结构体来表示这些几何和质量特性。例如:

mBody = struct(...
    'name', 'Rigid Body Example', ... % 刚体名称
    'shape', 'cube', ...               % 形状为立方体
    'length', 1, ...                   % 立方体的边长
    'mass', 1, ...                     % 质量
    'centerOfMass', [0.5, 0.5, 0.5], ... % 质心位置
    'inertiaMatrix', diag([1, 1, 1]) ... % 转动惯量矩阵
);

3.1.2 刚体在系统中的作用和限制

刚体在机械系统模型中的作用不仅取决于其物理特性,还包括与其它刚体之间的连接和约束。例如,两个刚体之间可能通过一个铰链关节连接,这样就需要定义铰链的位置、方向和运动学特性。

在MATLAB中,可以通过建立一个连接矩阵来定义多个刚体之间的相互作用。连接矩阵中可以定义刚体之间的约束关系和自由度限制。例如:

% 假设有两个刚体,定义它们之间的连接关系
mBody1 = struct(...);
mBody2 = struct(...);

% 建立连接矩阵
connectMatrix = [0, 1, 0; % 刚体1对刚体2的约束
                 1, 0, 0; % 刚体2对刚体1的约束
                 0, 0, 1]; % 自由度限制

3.2 机械系统的集成与分析

3.2.1 系统组件的连接和约束设置

在机械系统中,刚体之间的连接和约束是决定系统整体动态行为的关键因素。例如,在一个多体系统中,一个连接可能允许两个刚体之间进行转动,但限制它们之间的平移运动。

在MATLAB中,可以使用如下的函数或脚本来设置刚体之间的连接和约束条件:

% 示例:创建一个铰链连接
function hingeConstraint = createHingeConstraint(body1, body2, axis)
    hingeConstraint = struct(...
        'type', 'hinge', ... % 连接类型为铰链
        'body1', body1, ... % 第一个连接刚体
        'body2', body2, ... % 第二个连接刚体
        'axis', axis       % 转轴方向
    );
end

% 在系统中添加这个铰链连接
hinge1 = createHingeConstraint(mBody1, mBody2, [0, 0, 1]);

3.2.2 系统动力学分析和稳定性评估

为了分析机械系统的动力学特性,需要进行系统方程的推导,并通过数值积分方法求解。系统动力学分析涉及确定刚体的运动方程,并分析在各种力和扭矩作用下的响应。

在MATLAB中,可以使用符号计算和数值求解器来完成这一过程。例如,可以定义一个函数来表示系统的动力学方程,并使用 ode45 函数进行求解:

% 定义系统动力学方程
function dsys = systemDynamics(t, s, params)
    % s - 系统状态变量向量
    % params - 系统参数向量
    % dsys - 状态变量对时间的导数
    ...
end

% 创建初始状态和参数向量
initialState = [...];
systemParams = [...];

% 使用ode45求解动力学方程
[t, s] = ode45(@(t, s) systemDynamics(t, s, systemParams), [0, tf], initialState);

在上述代码中, tf 表示求解的时间跨度。根据分析结果,可以进一步评估系统的稳定性。如果需要进行稳定性分析,可以使用Lyapunov理论或Routh-Hurwitz判据等方法。

在MATLAB中还可以使用 eig 函数来计算系统的特征值,通过特征值的实部判断系统稳定性:

% 计算系统矩阵的特征值
eigenvalues = eig(A); % A为系统矩阵

% 检查特征值的实部
stability = all(real(eigenvalues) < 0);

如果所有特征值的实部都是负数,则系统是稳定的。否则,系统可能存在不稳定。

通过上述过程,我们可以构建并分析一个刚体和机械系统模型,并对系统的稳定性和动态特性进行评估。

4. 关节(body)的相对运动定义

在多体系统动力学分析中,关节(body)的相对运动定义是核心问题之一。关节不仅决定了刚体间的相对运动关系,而且也对系统的运动学和动力学特性有着深刻的影响。为了深入理解关节在多体系统中的作用和功能,本章节将从关节类型的选择、运动描述、以及关节动力学的集成分析等方面进行探讨。

4.1 关节类型与运动描述

4.1.1 常见关节类型的介绍和选择

多体系统中,常见的关节类型有转动关节(Revolute)、移动关节(Prismatic)、球形关节(Spherical)以及平面关节(Planar)等。每种关节都有其特定的运动学特性,适用于不同的工程应用场合。

  • 转动关节(Revolute) :使两个刚体在一定角度范围内进行旋转运动,适用于轴对称结构的连接。
  • 移动关节(Prismatic) :允许两个刚体沿某一轴线进行平移运动,适用于需要线性位移的系统。
  • 球形关节(Spherical) :允许三维空间内自由旋转,适用于球形或半球形结构的连接。
  • 平面关节(Planar) :允许在一个平面内进行二维平移和旋转运动,适用于某些特殊情况下的自由度限制。

关节类型的选择,需要根据实际的物理问题和系统的自由度要求进行。例如,一个多自由度的机械臂系统可能需要结合使用转动关节和移动关节。

4.1.2 关节运动的数学建模和参数化

为了在MATLAB中对关节的运动进行准确的数学建模,需要对每个关节的运动进行参数化描述。参数化描述通常包括关节的位置、速度、加速度等参数的数学表达式。

例如,对于一个转动关节,其角度位置θ(t)、角速度ω(t)和角加速度α(t)可以作为其运动的基本参数。运动学方程可以表示为:

% 关节角度参数
theta = @(t) 0.5 * sin(t); % 以时间t为变量的角度函数
% 角速度参数
omega = @(t) cos(t);
% 角加速度参数
alpha = @(t) -sin(t);

对于复杂的多体系统,可以使用矩阵和向量来表示多个关节的位置、速度和加速度,从而简化系统方程的建立过程。参数化的关节运动方程是进行动力学分析和仿真的基础。

4.2 关节动力学的集成分析

4.2.1 关节动力学方程的推导和求解

关节动力学方程的推导通常涉及牛顿第二定律或欧拉方程,并结合系统的质量分布、惯性特性和外力矩等因素。这些方程可以用来描述关节在多体系统中的动态行为。在MATLAB中,可以使用符号计算工具箱(Symbolic Math Toolbox)来辅助推导和求解这些方程。

% 假设一个二维转子系统的动力学方程
syms t m I alpha J omega theta
M = [m 0; 0 I]; % 质量和惯性矩阵
Q = [omega^2 * m * theta; -J * alpha]; % 外力矩和惯性项
% 动力学方程组
dyn_eqns = M * [diff(theta, t, t); diff(omega, t)] == Q;
% 使用dsolve求解微分方程
[theta_sol, omega_sol] = dsolve(dyn_eqns);

4.2.2 动力学仿真结果的分析和解释

在推导出关节动力学方程之后,可以通过MATLAB进行数值仿真,得到关节随时间变化的动力学特性。仿真结果可以被可视化地展示出来,以帮助理解关节在系统中的动态行为。

% 绘制角度和角速度随时间变化的图形
t = linspace(0, 10, 1000); % 时间向量
theta_values = subs(theta_sol, t);
omega_values = subs(omega_sol, t);
figure;
subplot(2,1,1);
plot(t, theta_values);
title('Joint Angle vs Time');
xlabel('Time (s)');
ylabel('Angle (rad)');
subplot(2,1,2);
plot(t, omega_values);
title('Joint Angular Velocity vs Time');
xlabel('Time (s)');
ylabel('Angular Velocity (rad/s)');

以上方程和仿真结果的分析,对理解关节在多体系统动力学中的作用至关重要,为多体系统的整体分析和设计提供了理论基础。

5. 多体系统动力学仿真的实践应用

5.1 动态仿真与传感器数据记录

动态仿真是在计算机环境中模拟真实世界物理行为的一种技术。在多体动力学系统中,动态仿真不仅可以预测系统的动态行为,而且可以记录传感器数据,以便后续分析。在MATLAB中,我们可以通过QuirkmultibodyDynamicsPackage工具包来设置仿真过程,并获取仿真过程中产生的传感器数据。

5.1.1 仿真过程的设置和运行

在QuirkmultibodyDynamicsPackage中,设置仿真过程涉及到选择仿真的时间范围、步长以及需要记录的数据类型。以下是一个基本的仿真过程设置示例:

% 假设我们已经构建了一个多体系统模型
model = multibodySystemModel('yourModelName');

% 设置仿真参数
tspan = [0 10]; % 仿真时间范围,从0到10秒
dt = 0.01; % 仿真步长为0.01秒

% 设置要记录的数据类型,如位移、速度、加速度等
sensorsDataTypes = {'displacement', 'velocity', 'acceleration'};

% 运行仿真
[simulationResults, t] = simulate(model, tspan, dt, sensorsDataTypes);

在上述代码中, simulate 函数负责执行仿真任务,并将结果保存在 simulationResults 变量中。变量 t 存储了对应的时间点。

5.1.2 传感器数据的记录和处理

仿真完成后,我们得到的数据通常需要进一步处理以满足特定的分析需求。例如,我们可能对系统的特定响应感兴趣,或者想对数据进行可视化。

% 提取位移数据并绘制结果图
displacementData = simulationResults(:, 'displacement');
plot(t, displacementData);
xlabel('Time (s)');
ylabel('Displacement (m)');
title('Displacement over Time');

在上述代码段中,我们从仿真结果中提取了位移数据,并使用MATLAB的绘图功能将其可视化。这有助于我们直观地理解系统动态特性。

5.2 外部力和扭矩(force)的处理

在多体系统动力学仿真中,外部作用力和扭矩对系统的动态行为有着决定性的影响。理解和准确地模拟这些外部作用对于获得仿真结果的准确性至关重要。

5.2.1 力和扭矩的输入和计算方法

通常,在多体系统中,力和扭矩可以通过直接输入或计算得到。在MATLAB中,可以使用内置的函数或者自定义的脚本来模拟特定的力和扭矩。

% 假设一个力函数f,它取决于时间和其他因素
f = @(t) [sin(t); cos(t); 10 * t]; % 一个简单的力函数示例

% 将力函数应用到系统模型的一个特定刚体上
applyForce(model, 'rigidBodyName', f);

在上面的代码中, applyForce 函数将一个随时间变化的力应用到了指定的刚体上。

5.2.2 外部作用对系统动态的影响分析

一旦力和扭矩被确定并应用到模型上,我们需要分析这些外部作用对系统动态的影响。这可能涉及到敏感性分析、参数优化,以及基于结果的决策。

% 分析力对系统动态的影响
% 这里可以通过比较有无外力作用下的仿真结果来进行分析
% 略去具体实现细节,根据仿真结果进行解读和讨论

5.3 弹性元件(spring)的模拟

在机械系统中,弹簧等弹性元件是非常常见的,它们在多体动力学仿真中扮演着重要角色。正确模拟弹簧的行为对于仿真结果的准确性至关重要。

5.3.1 弹性元件模型的构建和特性定义

在QuirkmultibodyDynamicsPackage中,构建弹簧模型需要定义其刚度、阻尼系数、自由长度等特性。

% 定义弹簧参数
springStiffness = 100; % 弹簧刚度
dampingCoefficient = 10; % 阻尼系数
naturalLength = 0.5; % 自然长度

% 创建弹簧并将其添加到系统模型中
spring = createSpring(springStiffness, dampingCoefficient, naturalLength);
addToModel(model, spring);

5.3.2 弹性元件在系统动态中的作用研究

一旦弹簧被添加到系统模型中,我们就可以研究其对系统动态行为的影响。

% 进行仿真以研究弹簧对系统的影响
% 略去具体实现细节,根据仿真结果进行解读和讨论

5.4 具体多体系统的构建示例

在实际应用中,构建一个完整的多体系统需要综合考虑各种因素,包括刚体之间的连接方式、约束条件、外部作用力和扭矩等。

5.4.1 系统构建步骤和关键点分析

为了构建一个具体的多体系统,我们需要遵循一系列步骤,并在每一步都进行详细的分析。

% 假设有一系列刚体和约束的列表
rigidBodies = {'rigidBody1', 'rigidBody2', ...};
constraints = {'constraint1', 'constraint2', ...};

% 构建多体系统的步骤
for i = 1:length(rigidBodies)
    % 添加刚体到系统模型中
    addToModel(model, rigidBodies{i});
end

for i = 1:length(constraints)
    % 添加约束条件
    applyConstraint(model, constraints{i});
end

5.4.2 复杂系统案例的构建与仿真

构建复杂系统时,我们可能需要利用现有的仿真案例作为参考,逐步构建并验证模型。

% 加载一个复杂系统案例并进行仿真
% 略去具体实现细节,根据仿真结果进行解读和讨论

5.5 可视化刚体方向和运动(triad)

在多体动力学仿真中,可视化刚体的方向和运动对于理解系统的动态行为至关重要。通过可视化可以直观地观察到刚体的运动状态。

5.5.1 刚体方向和运动的可视化技术

在MATLAB中,可视化技术可以通过3D图形和动画来展现刚体的方向和运动。

% 假设有一个函数用于可视化刚体运动
visualizeRigidBodies(model);

5.5.2 视觉化工具在调试和优化中的应用

可视化工具不仅帮助我们调试模型,而且在系统优化过程中也扮演着重要角色。

% 进行可视化,并根据视觉反馈对模型进行调整
% 略去具体实现细节,根据视觉反馈进行解读和讨论

5.6 工具包在学术研究和工程设计中的应用

QuirkmultibodyDynamicsPackage工具包在学术研究和工程设计中都有广泛的应用,它提供了一个强大的平台来分析和设计复杂的多体系统。

5.6.1 工具包在学术研究中的价值和应用案例

在学术研究中,该工具包可以用于理论验证、模型预测、以及对复杂系统的深入研究。

% 指出工具包在学术研究中的具体应用
% 略去具体实现细节,讨论在学术研究中的应用案例

5.6.2 工具包在工程设计和产品开发中的应用前景

在工程设计和产品开发中,工具包可以帮助工程师进行系统设计、优化以及性能评估,大大缩短产品上市时间。

% 探讨工具包在工程设计中的潜在应用
% 略去具体实现细节,讨论在工程设计中的应用前景

以上就是关于多体系统动力学仿真的实践应用的详细讨论,通过本章节内容,我们可以了解到如何在MATLAB环境中使用QuirkmultibodyDynamicsPackage工具包进行多体系统建模和分析,并且理解了工具包在实际研究和应用中的重要价值。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:QuirkmultibodyDynamicsPackage是一款在MATLAB环境下构建和分析复杂多体系统的专业工具包。它通过 mBody.m body.m joint.m 等类文件,以及 sensor.m force.m 等支持类,使得用户能够定义刚体属性、建立机械系统模型和进行动力学仿真。工具包内的多个示例文件如 demo_TwoStageLinkage.m 等,进一步展示了如何应用这些类来模拟多体系统。工具包非常适合学术研究和工程设计,能够提升对多体系统问题的理解和解决能力。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值