已知方阵的特征值求行列式_问题引导的代数学: 行列式的多样性

778e66f54470ce4cac8a45e069c1d84d.png

Sheldon Alxer 曾写过一篇文章, 题目是“Down with Determinant”, 后来扩展为一本书“Linear Algebra Done Right”, 国内有翻译本《线性代数应该怎么学》. 按他的观点, 行列式太难、不直观, 并且很多书上行列式的定义太突兀, 缺乏动机; 更重要的是, 线性代数的大部分内容不依赖于行列式. 他的观点有一定道理, 不过我不站在他的一边.

简单翻了翻他的书, 有两个地方让我觉得不舒服. 一是在线性空间的定义中, 他把加法和数乘的结合律放在同一条里了, 大概是想合并同类项. 由于我的惯性思维(也许是老眼昏花), 第一遍没看出来, 认为他少了一个条件. 有个同行提醒了我. 不过, 这个合并不太好, 因为它掩盖了一个重要的东西: 线性空间的定义中前四条是关于加法的, 简而言之就是加法是一个 Abel 群; 另外四条总结为一句话就是线性空间是数域的模. 这种合并把概念搞乱了.

另一个就是关于行列式的. 不用行列式当然也可以定义方阵或线性变换的特征值, 问题是一般矩阵的特征值怎么计算? 比如三阶的如何计算? 他在书中只举出了一些简单矩阵的特征值的计算, 这明显是不够的. 用特征值建了一个大厦, 却不会计算特征值, 这无异于空中楼阁. 刻意避开行列式有点适得其反, 人为地制造了很多麻烦. 当然, 不排除我看得不仔细, 没有领会到其中奥妙之处.

跟清华大学的扶磊老师和首师大的王永晖老师聊数学教育的问题, 我提到了行列式的定义, 结果引发了一场讨论. 就目前所了解的, 行列式的定义方式大致有如下几种: 1、按第一行(列)展开; 2、完全展开; 3、反对称多重线性函数; 4、外积; 5、体积; 6、群同态. 每个人对行列式的喜好角度都不一样: 我喜欢从二、三元一次方程组的角度来引入行列式, 利用找规律归纳出行列式的一般定义; 扶磊老师认为行列式的本质是外积, 说简单一点就是反对称多重线性函数; 王永晖老师更喜欢几何直观, 推崇一些书本上的几何定义, 也就是把平行多面体的体积定义为行列式.

这三种观点本身不矛盾, 是行列式的几种不同表现形式, 也是行列式在不同数学分支上的应用, 实质上起到了一个互补的作用. 从这个角度看, 把行列式的各种定义整理一下介绍给学生们还是有必要的. 文章题目本来想写成“Long Live Determinant”, 有点夸张, 还是低调点好.

起源: 线性方程组求解

我介绍一个理论喜欢从历史发展谈起, 希望能讲清楚数学概念、命题的来龙去脉, 也建议初学者去走一走数学家们走过的路. 不过, 关注历史并不意味着要严格按照历史进程, 毕竟历史上对很多数学问题的探索延续了很多年, 走了很多弯路, 我们不是很有必要重走这些弯路, 偶尔走一走也可以.

行列式具有传奇色彩, 它是日本数学家关孝和在 1683 年首先提出, 十年后德国数学家 Leibniz 又独立提出的. 关孝和的出发点是考虑两个多项式

equation?tex=f%28x%29%2Cg%28x%29%5Cin%7B%5Cmathbb+F%7D%5Bx%5D 的公因式问题. 如果
equation?tex=h%28x%29 是非常数公因式, 则存在
equation?tex=u%28x%29%2Cv%28x%29%5Cin%7B%5Cmathbb+F%7D%5Bx%5D, 使得

equation?tex=u%28x%29f%28x%29%2Bv%28x%29g%28x%29%3D0%2C+%5C%5C

其中

equation?tex=0%5Cleq%5Cdeg+u%28x%29%3C%5Cdeg+g%28x%29,
equation?tex=0%5Cleq%5Cdeg+v%28x%29%3C%5Cdeg+f%28x%29. 利用待定系数法求
equation?tex=u%28x%29%2Cv%28x%29 就会出来一个特殊的方程组. 判断其是否有非零解就引出了行列式的定义. Leibniz 更直接一点, 考虑的是三元一次方程组的解, 从而得到三阶行列式的表达式.

行列式的第一个定义: 第一行展开

中学生经常需要求解二元一次方程组. 我一直很好奇, 为什么我们会告诉学生们一元二次方程有求根公式, 却不讨论二元一次方程组的求解公式, 每次解方程组都需要加减或代入消元呢? 在我上中学的时候, 课本上已经没有二、三阶行列式了, 而比我高几级的同学是要学的. 当然, 二元一次方程组很简单, 引入行列式有点小题大做之嫌. 不知道是不是出于这种想法, 一元二次方程的求根公式和韦达定理在中学课本中的角色也渐渐淡化甚至消失了.

我们从二阶行列式的定义开始吧.

问题 1 二元一次线性方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da_%7B11%7Dx_1%2Ba_%7B12%7Dx_2%3Db_1%2C%5C%5C+a_%7B21%7Dx_1%2Ba_%7B22%7Dx_2%3Db_2%5Cend%7Barray%7D%5Cright.%5C%5C

有唯一解, 求解的表达式.

这个问题自然很简单, 不过, 如果我们引入一个记号——二阶行列式, 即

equation?tex=%5Cleft%7C%5Cbegin%7Barray%7D%7Bcc%7Da_%7B11%7D%26a_%7B12%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%5Cend%7Barray%7D%5Cright%7C%3Da_%7B11%7Da_%7B22%7D-a_%7B12%7Da_%7B21%7D%2C+%5C%5C

解的表达式就非常漂亮.

二阶不足以说明问题, 再研究一下三元一次方程组.

问题 2 三元一次线性方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da_%7B11%7Dx_1%2Ba_%7B12%7Dx_2%2Ba_%7B13%7Dx_3%3Db_1%2C%5C%5C+a_%7B21%7Dx_1%2Ba_%7B22%7Dx_2%2Ba_%7B23%7Dx_3%3Db_2%2C%5C%5C+a_%7B31%7Dx_1%2Ba_%7B32%7Dx_2%2Ba_%7B33%7Dx_3%3Db_3%2C%5Cend%7Barray%7D%5Cright.%5C%5C

有唯一解, 求解的表达式.

这个问题稍微复杂了一点, 可以利用消元法化为二元一次方程组, 不过我更喜欢利用二元情形的结论: 把

equation?tex=x_1 看作已知的, 利用后两个方程求出
equation?tex=x_2%2Cx_3 (用二阶行列式来表达), 再代入第一个方程解出
equation?tex=x_1.
equation?tex=x_1 的表达式是一个分式, 分子分母有共性, 引入三阶行列式就更能看出整齐性, 甚至猜出了三元情形的 Cramer 法则.

如果还看不出规律, 就不妨试一下四元一次方程组的求解. 此时一定要利用三元一次方程组的结果, 否则会很麻烦! 这样就很容易发现行列式的归纳定义了.

问题 3 (行列式按第一行展开)

equation?tex=A%3D%28a_%7Bij%7D%29%5Cin%7B%5Cmathbb+F%7D%5E%7Bn%5Ctimes+n%7D, 定义
equation?tex=A 的行列式为

equation?tex=%7CA%7C%3D%5Cdet%28A%29%3Da_%7B11%7DM_%7B11%7D-a_%7B12%7DM_%7B12%7D%2B%5Ccdots%2B%28-1%29%5E%7Bn-1%7Da_%7B1n%7DM_%7B1n%7D.+%5C%5C

尽管这个过程与历史上数学家们的探索过程不一定吻合, 但我个人还是喜欢这样来引入行列式, 因为这个过程很自然, 也是研究问题的一个合理思路. 类似地, 还可以用消元法得到行列式按第一列展开的定义. 当然, 按第一行展开的定义只是一个递推关系, 只能计算一些特殊的行列式. 一般地,

equation?tex=n 阶行列式的通项公式是什么? 于是就需要:

行列式的第二个定义: 完全展开

不难得到三阶行列式的完全展开式为

equation?tex=%5Cleft%7C%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%26a_%7B12%7D%26a_%7B13%7D%5C%5C+a_%7B21%7D%26a_%7B22%7D%26a_%7B23%7D%5C%5C+a_%7B31%7D%26a_%7B32%7D%26a_%7B33%7D%5Cend%7Barray%7D%5Cright%7C%3D%5Cbegin%7Barray%7D%7Bc%7Da_%7B11%7Da_%7B22%7Da_%7B33%7D%2Ba_%7B12%7Da_%7B23%7Da_%7B31%7D%2Ba_%7B13%7Da_%7B21%7Da_%7B32%7D%5C%5C+-a_%7B11%7Da_%7B23%7Da_%7B32%7D-a_%7B12%7Da_%7B21%7Da_%7B33%7D-a_%7B13%7Da_%7B22%7Da_%7B31%7D%5Cend%7Barray%7D.%5C%5C

很多书上用如下的图来直观地表示三阶行列式:

4457f0b3c5d2f6e8b88426f61cfaf1a4.png

这个图有一定的误导性: 我刚开始接触行列式的时候就猜四阶行列式的展开式有 8 项! 这当然是不对的, 正确的定义方式如下:

问题 4 (行列式的完全展开)

equation?tex=%7CA%7C%3D%5Csum%5Climits_%7B%28i_1+i_2+%5Ccdots+i_n%29%7D%28-1%29%5E%7B%5Ctau%28i_1%2Ci_2%2C%5Ccdots%2Ci_n%29%7D+a_%7B1+i_1%7Da_%7B2+i_2%7D%5Ccdots+a_%7Bn+i_n%7D%2C%5C%5C

其中求和取遍

equation?tex=1%2C2%2C%5Ccdots%2Cn 的所有排列
equation?tex=i_1%2Ci_2%2C%5Ccdots%2Ci_n,
equation?tex=%5Ctau%28i_1%2Ci_2%2C%5Ccdots%2Ci_n%29 表示该排列的逆序数.

很多书上就是直接讲排列, 然后就给出如上的定义. 这的确如 Sheldon Alxer 所说不直观、缺乏动机! 至少我学的时候困扰很久: 为什么这么定义? 怎么想到这么定义的? 可惜当时没人告诉我, 我也不想这样去折磨我的学生们, 尽管他们不一定会产生与我一样的困扰.

行列式的完全展开式一般不具有可操作性, 很少有行列式能这样计算出来, 不过, 它有理论上的意义, 根据它很容易得出行列式的性质, 既方便我们计算行列式, 又使得从其他角度来看待行列式成为可能.

行列式的第三个定义: 反对称多重线性函数

利用完全展开式不难得到行列式具有如下性质:

问题 5 (1) 行列式中两行(列)互换, 行列式变号.

(2) 行列式的某一行(列)乘以常数

equation?tex=c, 则新的行列式是原行列式的
equation?tex=c 倍.

(3) 行列式的某一行(列)若可以拆成两行(列), 则行列式可拆成两个行列式之和.

(4) 行列式的某一行(列)的

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值