java reduce 分组_【hadoop】25.MapReduce-shuffle之分组

简介

shuffle机制中的分组排序(Group)是一个建立在Reducer阶段的处理过程。参看下图的第15步骤。通过这一步骤,我们可以修改Reducer判定可以的逻辑,按照我们的思维去定义那些key应该属于同一类型的分组。

需要注意的是,现实开发中经常使用的分组其实就是分区功能,本节讲述的是Reducer阶段根据key分组的过程。

默认情况下MapReduce的分组阶段会根据我们提供的key进行排序,然后将排序结果相等的放到一次reducer循环中(代码上的体现)。而该排序过程,其实可以由我们去定义,也就说,将排序的结果我们需要自定义一个GroupComparator.

0ff054ad7ca0376dc99807773488d77a.png

1、探究GroupComparator

我们可以通过输出日志查看当前的分组数

...

Reduce input groups=3

...

例如,上述情况下分组为3。

如果我们不特殊指定分组,那么分组数会按照key的对应WritableComparator的实现类逻辑进行排序,并按照key进行分组排序,同一组key的数据会进入reducer方法中进行处理,一组执行一次。

以wordCount举例,在不考虑自定义分区(partition)的情况下(现在是默认一个分区)。我们reducer输入的key值是Text类型,那么他的key排序逻辑就应该是Text的Comparator。参见源码:

@InterfaceAudience.Public

@InterfaceStability.Stable

public class Text extends BinaryComparable

BinaryComparable,即按照字典顺序进行排序。也就是说,相同的JAVA类型的String(String对应Hadoop的序列化Text类型)Key会被划分为一个分组,我们来验证一下这个想法,例如如下的输入数据

about

about

areya

akuya

mywife

按照我们之前的理论,分组数应该是4,即两个about会被划分为一组,执行一次处理。运行,查看分组日志:

...

Reduce input groups=4

...

就是这样。

接下来,我们探讨一下如何改变分组数。其实答案显而易见,那就是定义Key类型的Comparator逻辑,实现自己的排序行为。

我们来看看Hadoop类型组件中使用的Comparator有哪些,每个类型都有自己的Comparator实现,我们可以进入源码一一查看。

4f773a06c597f64ca5cbb0f261163961.png

为了练习分组排序,接下来我们运行一个案例。

1、案例:订单号分组排序

需求:获取每种订单号中消费最多的一条记录,并按订单号的字典序排序

输入数据:第一列为订单号,第二列为杂项,第三列为消费值。

Order_0000001Pdt_01222.8

Order_0000002Pdt_05722.4

Order_0000001Pdt_0525.8

Order_0000003Pdt_01222.8

Order_0000003Pdt_0133.8

Order_0000002Pdt_03522.8

Order_0000002Pdt_04122.4

Order_0000002Pdt_041220.4

Order_0000002Pdt_041422.4

Order_0000002Pdt_041522.4

Order_0000002Pdt_041622.4

Order_0000001Pdt_041000.4

1.1、分析

1、首先筛选掉杂项Pdt_01;

2、定义订单Bean,将其作为Key并先根据id排序,再根据消费进行排序(value为空值);

难题出现了,我们的key为订单Bean,以他作为key的话,我们无法关联到Order_0000001的第一条数据是我们想要的,怎么做?显然,我们需要将订单id相同的一组订单数据放在一起,这样我们只需要取第一条数据就可以了。

也就是要欺骗reducer,不要以Bean对象作为参考,而已bean对象的orderId作为参考。

问题迎刃而解,接下来,开始编码。

也可以考虑结果按订单号进行分区,实现分组效果,这是业务开发中常用的方式。同时,该问题的解决方案比较极端,还有更多优雅的处理方式可以选择,这里只是为了演示reducer的迭代逻辑,因此行此下策。

1.2、实现

(1) Bean

package com.zhaoyi.order;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

public class OrderBean implements WritableComparable {

private String orderId;

private double price;

// second order

public int compareTo(OrderBean o) {

// according to order id.

int result = this.orderId.compareTo(o.getOrderId());

// then by price

if(result == 0){

result = this.getPrice() > o.getPrice()? -1:1;

}

return result;

}

public void write(DataOutput out) throws IOException {

out.writeUTF(orderId);

out.writeDouble(price);

}

public void readFields(DataInput in) throws IOException {

this.orderId = in.readUTF();

this.price = in.readDouble();

}

public OrderBean() {

}

public void set(String orderId, double price){

this.orderId = orderId;

this.price = price;

}

public OrderBean(String orderId, double price) {

this.orderId = orderId;

this.price = price;

}

public String getOrderId() {

return orderId;

}

public void setOrderId(String orderId) {

this.orderId = orderId;

}

public double getPrice() {

return price;

}

public void setPrice(double price) {

this.price = price;

}

@Override

public String toString() {

return orderId + "\t" + price ;

}

}

(2)Mapper

package com.zhaoyi.order;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class OrderMapper extends Mapper {

OrderBean orderBean = new OrderBean();

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

String line = value.toString();

String[] strings = line.split("\t");

orderBean.set(strings[0], Double.parseDouble(strings[2]));

context.write(orderBean, NullWritable.get());

}

}

(3)Reducer

package com.zhaoyi.order;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class OrderReducer extends Reducer< OrderBean, NullWritable, OrderBean, NullWritable> {

@Override

protected void reduce(OrderBean key, Iterable values, Context context) throws IOException, InterruptedException {

// 注意此处迭代的代码,每当我们迭代一次,

// key的值编写切换到下一个分组的key值,是什么呢?您可以尝试一下就知道了。

// System.out.println("------------");

// System.out.print(key.getOrderId());

// int count = 0;

// for (NullWritable value:values) {

// count++;

// }

// System.out.println("拥有"+ count + "条数据.");

context.write(key, NullWritable.get());

}

}

(4)GroupComparator

package com.zhaoyi.order;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.io.WritableComparator;

public class OrderGroupComparator extends WritableComparator {

public OrderGroupComparator() {

super(OrderBean.class, true);

}

@Override

public int compare(WritableComparable a, WritableComparable b) {

OrderBean aa = (OrderBean) a;

OrderBean bb = (OrderBean) b;

return aa.getOrderId().compareTo(bb.getOrderId());

}

}

(5)驱动类,在此处指定分组排序类

package com.zhaoyi.order;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OrderDriver {

public static void main(String[] args) throws Exception{

Job job = Job.getInstance(new Configuration());

job.setJarByClass(OrderDriver.class);

job.setMapperClass(OrderMapper.class);

job.setReducerClass(OrderReducer.class);

job.setMapOutputKeyClass(OrderBean.class);

job.setMapOutputValueClass(NullWritable.class);

job.setOutputKeyClass(OrderBean.class);

job.setOutputValueClass(NullWritable.class);

// 设置自定义分组排序类

job.setGroupingComparatorClass(OrderGroupComparator.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true)? 1:0);

}

}

运行代码,返回结果:

Order_00000011000.4

Order_00000021622.4

Order_0000003222.8

在reducer中如果进行迭代,会更新key值,请注意。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值