分布式计算、统计学习与ADMM算法(转)

业界一直在谈论大数据,对于统计而言,大数据其实意味着要不是样本量增加n→∞,要不就是维度的增加p→∞,亦或者两者同时增加,并且维度与样本量的增长速度呈线性或者指数型增长。在稀疏性的假设条件下,再加上一些正则性方法,统计学家可以证明各种加penalty的模型所给出的参数估计具有良好的统计性质,收敛速度也有保证,同时还会给出一些比较好的迭代算法,但是,他们并没有考虑真实环境下的所消耗的计算时间。虽然统计学家也希望尽量寻求迭代数目比较少的算法(比如one-step估计),但是面对真实的Gb级别以上的数据,很多时候我们还是无法直接用这些算法,原因是一般的硬件都无法支撑直接对所有数据进行运算的要求。如果想减少抽样误差,不想抽样,又想提高估计的精度,那么还是需要寻求其他思路,结合已有的模型思想来解决这些问题。在目前条件下,并行化、分布式计算是一种比较好的解决思路,利用多核和多机器的优势,这些好算法便可以大规模应用,处理大数据优势便体现出来了。对于统计而言,数据量越大当然信息越可能充分(假设冗余成分不是特别多),因为大样本性质本身就希望样本越多越好嘛。
本文是基于Stephen Boyd 2011年的文章《Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers》进行的翻译和总结。Boyd也给出了利用matlab的CVX包实现的多种优化问题的matlab示例

1. 优化的一些基本算法思想

ADMM算法并不是一个很新的算法,他只是整合许多不少经典优化思路,然后结合现代统计学习所遇到的问题,提出了一个比较一般的比较好实施的分布式计算框架。因此必须先要了解一些基本算法思想。

1.1 Dual Ascent

对于凸函数的优化问题,对偶上升法核心思想就是引入一个对偶变量,然后利用交替优化的思路,使得两者同时达到optimal。一个凸函数的对偶函数其实就是原凸函数的一个下界,因此可以证明一个较好的性质:在强对偶性假设下,即最小化原凸函数(primal)等价于最大化对偶函数(dual),两者会同时达到optimal。这种转化可以将原来很多的参数约束条件变得少了很多,以利于做优化。具体表述如下:
mins.t.f(x)Ax=b⟹L(x,y)=f(x)+yT(Ax−b)⟹对偶函数(下界)g(y)=infxL(x,y)

 

在强对偶性的假设下,primal和dual问题同时达到最优。
x⋆=argminxL(x,y⋆)

 

因此,若对偶函数g(y)可导,便可以利用梯度上升法,交替更新参数,使得同时收敛到最优。迭代如下:
xk+1:yk+1:=argminxL(x,yk)(x-最小化步)=yk+αk∇g(y)=yk+αk(Axk+1−b)(对偶变量更新,αk是步长)

 

当g不可微的时候也可以将其转化下,成为一个所谓的subgradient的方法,虽然看起来不错,简单证明下即可知道xk和yk同时可达到optimal,但是上述条件要求很苛刻:f(x)要求严格凸,并且要求α选择有比较合适。一般应用中都不会满足(比如f(x)是一个非零的
仿射函数),因此dual ascent不会直接应用。
1.2 Dual Decomposition
虽然dual ascent方法有缺陷,要求有些严格,但是他有一个非常好的性质,当目标函数f是可分的(
separable)时候(参数抑或feature可分),整个问题可以拆解成多个子参数问题,分块优化后汇集起来整体更新。这样非常有利于并行化处理。形式化阐述如下:
mins.t.f(x)=∑i=1Nfi(xi),xi∈Rni,x∈RnAx=∑i=1NAixi=b,(对A矩阵按列切分开)⟹L(x,y)=∑i=1NLi(xi,y)=∑i=1N(fi(xi)+yTAixi−1NyTb)

因此可以看到其实下面在迭代优化时,x-minimization步即可以拆分为多个子问题的并行优化,对偶变量更新不变这对于feature特别多时还是很有用的。
xk+1i:yk+1:=argminxLi(xi,yk)(多个xi并行最小化步)=yk+αk∇g(y)=yk+αk(Axk+1−b)(汇集整体的x,然后对偶变量更新)

对偶分解是非常经典的优化方法,可追溯到1960年代。但是这种想法对后面的分布式优化方法影响较大,比如近期的graph-structure优化问题。
1.3 Augmented Lagrangians and the Method of Multipliers
从上面可以看到dual ascent方法对于目标函数要求比较苛刻,为了放松假设条件,同时比较好优化,于是就有了Augmented Lagrangians方法,目的就是放松对于f(x)严格凸的假设和其他一些条件,同时还能使得算法更加稳健。
Lρ(x,y)=f(x)+yT(Ax−b)+ρ2∥Ax−b∥22⟹mins.t.f(x)+ρ2∥Ax−b∥22Ax=b

从上面可以看到该问题等价于最初的问题,因为只要是可行解对目标函数就没有影响。但是加了后面的(ρ/2)∥Ax−b∥22惩罚项的好处是使得对偶函数gρ(y)=infxLρ(x,y)在更一般的条件下可导。计算过程与之前的dual ascent基本一样,除了最小化x时候加了扩增项。
xk+1yk+1=argminxLρ(x,yk)=yk+ρ(Axk+1−b)

上述也称作method of multipliers,可能也是因为更新对偶变量y时步长由原来变化的αk转为固定的ρ了吧。该算法在即使f(x)不是严格凸或者取值为+∞情况都可以成立,适用面更广。同样可以简单证明primal变量x和对偶变量y可以同时达到最优。
虽然Augmented Lagrangians方法有优势,但也破坏了dual ascent方法的利用分解参数来并行的优势。当f是separable时,对于Augmented Lagrangians却是not separable的(因为平方项写成矩阵形式无法用之前那种分块形式),因此在x−min步时候无法并行优化多个参数xi。如何改进,继续下面的议题就可以慢慢发现改进思想的来源。
2. Alternating Direction Method of Multipliers(ADMM)2.1 ADMM算法概述
为了整合dual ascent可分解性与method multiplers优秀的收敛性质,人们就又提出了改进形式的优化ADMM。目的就是想能分解原函数和扩增函数,以便于在对f更一般的假设条件下并行优化。ADMM从名字可以看到是在原来Method of Multipliers加了个Alternating Direction,可以大概猜想到应该是又想引入新变量,然后交叉换方向来交替优化。形式如下:
mins.t.f(x)+g(z)Ax+Bz=c⟹Lρ(x,z,y)=f(x)+g(z)+yT(Ax+Bz−c)+(ρ/2)∥Ax+Bz−c∥22

从上面形式确实可以看出,他的思想确实就是想把primal变量、目标函数拆分,但是不再像dual ascent方法那样,将拆分开的xi都看做是x的一部分,后面融合的时候还需要融合在一起,而是最先开始就将拆开的变量分别看做是不同的变量x和z,同时约束条件也如此处理,这样的好处就是后面不需要一起融合x和z,保证了前面优化过程的可分解性。于是ADMM的优化就变成了如下序贯型迭代(这正是被称作alternating direction的缘故):
xk+1zk+1yk+1=argminxLρ(x,zk,yk)=argminzLρ(xk+1,z,yk)=yk+ρ(Axk+1+Bzk+1−c)

后面我们可以看到这种拆分思想非常适合统计学习中的ℓ1-norm等问题:loss + regulazition(注意:一定要保证z分解出来,ADMM借助的就是用一个z变量来简化问题,不管他是约束还是其他形式也罢,需要构造一个z出来,后面具体到细节问题我们会有更深的体会)。
为了简化形式,ADMM有一个scaled form形式,其实就是对对偶变量做了scaled处理。先定义每一步更新的残差为r=Ax+Bz−c,于是稍加计算
yT(Ax+Bz−c)+(ρ/2)∥Ax+Bz−c∥22=yTr+(ρ/2)∥r∥22=(ρ/2)∥r+(1/ρ)y∥22−(1/2ρ)∥y∥22=(ρ/2)∥r+u∥22−(ρ/2)∥u∥22

此处u=(1/ρ)y称为scaled dual variable,并令每一步迭代的残差为rk=Axk+Bzk−c,以及累计残差uk=u0+∑kj=1rj,于是ADMM形式就可以简化为如下形式
xk+1zk+1uk+1=argminxLρ(x,zk,yk)=argmin(f(x)+(ρ/2)∥Ax+Bzk−c+uk∥22)=argminzLρ(xk+1,z,yk)=argmin(g(z)+(ρ/2)∥Axk+1+Bz−c+uk∥)=uk+ρ(Axk+1+Bzk+1−c)

写成这种形式有利于后面简化优化问题,当然可以不作任何处理。
2.2 ADMM算法性质和评价
(1)收敛性
关于收敛性,需要有两个假设条件:
  • f和g分别是扩展的实数函数Rn(Rm)→R⋃+∞,且是closed、proper和convex的;
  • 扩增的lagrangian函数L0有一个鞍点(saddle point);对于约束中的矩阵A,B都不需要满秩。
在此两个假设下,可以保证残差、目标函数、对偶变量的收敛性。
Note:实际应用而言,ADMM收敛速度是很慢的,类似于共轭梯度方法。迭代数十次后只可以得到一个acceptable的结果,与快速的高精度算法(Newton法,内点法等)相比收敛就慢很多了。因此实际应用的时候,其实会将ADMM与其他高精度算法结合起来,这样从一个acceptable的结果变得在预期时间内可以达到较高收敛精度。不过一般在大规模应用问题中,高精度的参数解对于预测效果没有很大的提高,因此实际应用中,短时间内一个acceptable的结果基本就可以直接应用预测了。
(2)停止准则
对于ADMM的能到到optimal的条件此处就不做赘述了,与基本的primal和dual feasibility 的条件差不多,即各primal variable的偏导和约束条件为0,从最优条件中可以得到所谓的对偶残差(dual residuals)和初始残差(primal residuals)形式:
sk+1rk+1=ρATB(zk+1−zk)(dualresiduals)=Axk+1+Bzk+1−c(primalresiduals)

相对而言,此处更难把握的其实是停止准则,因为收敛速度问题,要想获得一个还过得去可以拿来用的参数解,那么判断迭代停止还是比较重要的。实际应用中,一般都根据primal residuals和dual residuals足够小来停止迭代,阈值包含了绝对容忍度(absolute tolerance)和相对容忍度(relative tolerance),设置还是非常灵活和难把握的(貌似网上有不少人吐槽这个停止准则的不靠谱- -!),具体形式如下:
∥sk∥2≤ϵdual∥rk∥2≤ϵpri=n√ϵabs+ϵrel∥ATyk∥2=p√ϵabs+ϵrelmax{∥Axk∥2,∥Bzk∥,∥c∥2}

上面的p√和n√分别是维度和样本量。一般而言,相对停止阈值ϵrel=10−3或者10−4,绝对阈值的选取要根据变量取值范围来选取(咋选的呢?没说额,具体比例都不给说- -!)
另外一些细节问题,比如原来惩罚参数ρ是不变的,一些文献也做了一些可变的惩罚参数,目的是为了降低对于惩罚参数初始值的依赖性。不过变动的ρ会导致ADMM的收敛性证明比较困难,因此实际中假设经过一系列迭代后ρ也稳定,边可直接用固定的惩罚参数ρ了。还有其他问题,诸如x与z迭代顺序问题,实际操作下有所有不同,这些不是特别重要之处,可以忽略。其他与ADMM比较相关算法的有dual ADMM算法,distributed ADMM算法,还有整合了ADMM与proximal method of multiplier的算法
2.3 ADMM一般形式与部分具体应用
当构造了ADMM算法中的f,g,A,B后,便可直接应用该算法了。我们会经常遇到如下三种一般形式的问题
  • 二次目标优化项(quadratic objective terms);
  • 可分的目标函数和约束(separable objective and constraints);
  • 光滑目标函数项(smooth objective terms)。
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值