双边滤波原理和matlab,双边滤波器的原理及实现

CSDN如何转载别人文章啊?!!!

悲剧只能复制黏贴了

双边滤波器是什么?

双边滤波(Bilateral filter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器(http://en.wikipedia.org/wiki/Gaussian_filter)和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器),后文中将结合公式做详细介绍。

双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,

1338365238_1668.jpg

权重系数w(i,j,k,l)取决于定义域核

1338365362_6880.jpg

和值域核

1338365557_1300.jpg

的乘积

1338365512_2777.jpg

同时考虑了空间域与值域的差别,而Gaussian Filter和α均值滤波分别只考虑了空间域和值域差别。

=======================================================================

双边滤波器的实现(MATLAB):function B = bfilter2(A,w,sigma)

CopyRight:

% Douglas R. Lanman, Brown University, September 2006.

% dlanman@brown.edu, http://mesh.brown.edu/dlanman

具体请见function B = bfltGray(A,w,sigma_d,sigma_r)函数说明。

%简单地说:

%A为给定图像,归一化到[0,1]的矩阵

%W为双边滤波器(核)的边长/2

%定义域方差σd记为SIGMA(1),值域方差σr记为SIGMA(2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Pre-process input and select appropriate filter.

function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.

if~exist('A','var') || isempty(A)

error('Input image A is undefined or invalid.');

end

if~isfloat(A) || ~sum([1,3] == size(A,3)) || ...

min(A(:))  1

error(['Input image A must be a double precision ',...

'matrix of size NxMx1 or NxMx3 on the closed ',...

'interval [0,1].']);

end

% Verify bilateral filter window size.

if~exist('w','var') || isempty(w) || ...

numel(w) ~= 1 || w 

w = 5;

end

w = ceil(w);

% Verify bilateral filter standard deviations.

if~exist('sigma','var') || isempty(sigma) || ...

numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0

sigma = [3 0.1];

end

% Apply either grayscale or color bilateral filtering.

ifsize(A,3) == 1

B = bfltGray(A,w,sigma(1),sigma(2));

else

B = bfltColor(A,w,sigma(1),sigma(2));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Implements bilateral filtering forgrayscale images.

function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.

[X,Y] = meshgrid(-w:w,-w:w);

%创建核距离矩阵,e.g.

%  [x,y]=meshgrid(-1:1,-1:1)

%

% x =

%

%     -1     0     1

%     -1     0     1

%     -1     0     1

%

%

% y =

%

%     -1    -1    -1

%      0     0     0

%      1     1     1

%计算定义域核

G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.

h = waitbar(0,'Applying bilateral filter...');

set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.

%计算值域核H 并与定义域核G 乘积得到双边权重函数F

dim = size(A);

B = zeros(dim);

fori = 1:dim(1)

forj = 1:dim(2)

% Extract local region.

iMin = max(i-w,1);

iMax = min(i+w,dim(1));

jMin = max(j-w,1);

jMax = min(j+w,dim(2));

%定义当前核所作用的区域为(iMin:iMax,jMin:jMax)

I = A(iMin:iMax,jMin:jMax);%提取该区域的源图像值赋给I

% Compute Gaussian intensity weights.

H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

% Calculate bilateral filter response.

F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);

B(i,j) = sum(F(:).*I(:))/sum(F(:));

end

waitbar(i/dim(1));

end

% Close waitbar.

close(h);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Implements bilateral filter forcolor images.

function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.

ifexist('applycform','file')

A = applycform(A,makecform('srgb2lab'));

else

A = colorspace('Lab

end

% Pre-compute Gaussian domain weights.

[X,Y] = meshgrid(-w:w,-w:w);

G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (usingmaximum luminance).

sigma_r = 100*sigma_r;

% Create waitbar.

h = waitbar(0,'Applying bilateral filter...');

set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.

dim = size(A);

B = zeros(dim);

fori = 1:dim(1)

forj = 1:dim(2)

% Extract local region.

iMin = max(i-w,1);

iMax = min(i+w,dim(1));

jMin = max(j-w,1);

jMax = min(j+w,dim(2));

I = A(iMin:iMax,jMin:jMax,:);

% Compute Gaussian range weights.

dL = I(:,:,1)-A(i,j,1);

da = I(:,:,2)-A(i,j,2);

db = I(:,:,3)-A(i,j,3);

H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

% Calculate bilateral filter response.

F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);

norm_F = sum(F(:));

B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;

B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;

B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

end

waitbar(i/dim(1));

end

% Convert filtered image back to sRGB color space.

ifexist('applycform','file')

B = applycform(B,makecform('lab2srgb'));

else

B = colorspace('RGB

end

% Close waitbar.

close(h);

调用方法:

I=imread('einstein.jpg');

I=double(I)/255;

w     = 5;       % bilateral filter half-width

sigma = [3 0.1]; % bilateral filter standard deviations

I1=bfilter2(I,w,sigma);

subplot(1,2,1);

imshow(I);

subplot(1,2,2);

imshow(I1)

实验结果:

1338366543_9909.jpg

参考资料:

1.《Computer Vision Algorithms and Applications》

5. http://mesh.brown.edu/dlanman

同态滤波是一种常见的图像处理方法,它可以在保持图像边缘信息的前提下,对图像进行滤波去噪。与传统的线性滤波方法不同,同态滤波是一种非线性的滤波方法,它可以通过调整滤波的参数来实现不同的效果。同态滤波的主要思想是通过对图像进行频域变换,将图像分解成不同的频率分量,然后对每个频率分量进行滤波处理,最后再将滤波后的频率分量合成为一张图像。同态滤波可以用于去除图像中的噪声、增强图像的对比度、调整图像的亮度等。 下面我们来介绍一下如何使用Matlab实现双边滤波和同态滤波。 1. 双边滤波 双边滤波是一种常见的图像去噪方法,它可以在保护图像边缘信息的同时,去除图像中的噪声。双边滤波的主要思想是通过在空间域和灰度域两个方向上进行加权平均,来消除图像中的噪声。在Matlab中,我们可以使用“bfilter2”函数来实现双边滤波。 具体实现步骤如下: (1)读入待处理的图像 I = imread('lena.jpg'); (2)对图像进行双边滤波处理 J = bfilter2(I, [3 3], 5); (3)显示滤波后的图像 imshow(J); 其中,[3 3]表示滤波的大小,5表示滤波的强度。 2. 同态滤波 同态滤波是一种常见的图像增强方法,它可以在保持图像边缘信息的前提下,增强图像的对比度和亮度。同态滤波的主要思想是通过对图像进行频域变换,将图像分解成低频和高频分量,然后对低频分量进行滤波处理,对高频分量进行增强处理,最后再将滤波后的低频分量和增强后的高频分量合成为一张图像。在Matlab中,我们可以使用“imadjust”函数和“homfilt2”函数来实现同态滤波。 具体实现步骤如下: (1)读入待处理的图像 I = imread('lena.jpg'); (2)对图像进行同态滤波处理 H = fspecial('gaussian', [3 3], 1); Ih = imfilter(double(I), H, 'symmetric'); J = homfilt2(Ih); (3)显示滤波后的图像 imshow(J); 其中,[3 3]表示高斯滤波的大小,1表示高斯滤波的标准差,symmetric表示在边缘处进行对称填充。 通过以上步骤,我们可以实现双边滤波和同态滤波的功能。需要注意的是,滤波的大小和强度可以根据实际情况进行调整,以达到最佳的滤波效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值