自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(338)
  • 收藏
  • 关注

原创 软件简单介绍

话不多说,直接上视频,具体的ui界面效果;pcl qt软件介绍。

2024-12-11 21:54:17 139

原创 PCL1.14.1 VTK9.30和QT6.7.3联合编译

打开cmake-gui,我的版本是3.30.5,设置source为VTK源码,build为新建的build,再点击【Add Entry】按钮添加缓存变量 CMAKE_DEBUG_POSTFIX,类型为 STRING,值设置为 -gd。之后再次点击Configure,弹出错误的话就是Qt6的一些路径需要再次设置下,再次Configure,直到没有错误,点击Generate,成功后点击Open Project,分别在debug和release下生成AllBuild和Install。之后点击Configure。

2024-12-11 21:16:09 814

原创 c++ PCL QT学习(2024最新版)

目录1.环境配置2.基本操作3.点云滤波4.点云分割5.点云拟合6.特征检测7.点云配准8.点云重建9.基础图形生成10.点云转图像

2024-12-11 20:53:23 161

原创 PCL1.14.1 VS2022环境配置

4、将下载的 pcl-1.14.1-pdb-msvc2022-win64 解压,并将其中的全部 .pdb文件复制到PCL安装路径的bin文件夹下,我的是 D:\Program Files\PCL 1.14.1\bin。5、打开vs2022,新建项目,选择新建Windows桌面向导,选择路径,选择空项目和控制台应用程序,命名为PCL_Study.cpp。15、退出VS2022,点击VS2022图标,右键到属性,点击快捷方式,点击下方的高级选项,将管理员身份运行勾选上。窗口中显示兔子模型,PCL配置成功。

2024-11-09 17:17:47 944 4

原创 Spin Image算法计算特征描述子

局部坐标系确定:为每一个点(称为基础点)定义一个局部坐标系,通常使用法线为轴。投影平面:将邻域内的点投影到一个以基础点为中心、法线为法向量的二维投影平面上。生成直方图:将投影到平面上的点根据其径向和轴向距离统计成二维直方图,这个直方图即为Spin Image。

2024-11-09 14:52:25 249

原创 CVFH算法计算特征描述子

CVFH的主要思想是通过对点云中每个点的法线进行分析,计算出描述点云几何形状的特征直方图。与VFH不同,CVFH通过对点云进行分割,以获得更稳定和更具代表性的特征。法线估计:计算每个点的法线方向。特征直方图:通过法线和曲率信息生成描述子。聚类处理:将点云分割成若干个簇,分别计算每个簇的特征。CVFH特征不仅考虑法线方向和曲率信息,还可以结合点云的分布信息,通过分割和聚类获得更鲁棒的特征描述。

2024-11-09 14:46:09 156

原创 3DSC算法计算点云描述子

3DSC通过在每个点周围定义一个球形区域,将该区域分割成若干个体素(bins),并计算每个体素内的点数。通过这些体素的点数分布,可以形成一个描述该点局部几何特征的直方图。这种直方图在旋转和平移上具有一定的不变性,因此适合用于点云匹配。

2024-11-09 14:40:43 338

原创 计算点云三维不变矩

三维不变矩是从几何矩派生出的,用于描述形状的全局特征,这些特征不受平移、旋转和缩放的影响。通过对形状的分布进行统计分析,我们可以得到一组能够描述形状特性的值。几何矩通常用于描述对象的质量分布,三维不变矩则在此基础上进行归一化和不变性增强处理。

2024-11-09 14:26:10 161

原创 VFH算法计算特征描述子

VFH的基本思想是结合局部法向量和点与质心之间的方向关系来形成一个全局性的描述子。它将这些信息组合成一个直方图,通过直方图的分布来捕捉对象的特征。

2024-11-09 14:19:47 225

原创 RSD算法计算特征描述子

RSD描述子的基本思想是计算点云局部区域的圆柱形特性,通过估计局部曲率和局部半径来表征点的几何形状。它主要用于识别曲面类型、推断表面形状或者用于3D物体识别和分类。

2024-11-09 14:08:11 166

原创 SHOT算法计算特征描述子

SHOT描述子通过分析点的局部邻域内的几何和颜色信息来生成稳定的特征。局部参考框架(LRF):为每个关键点构建一个局部参考框架,使特征对旋转具有不变性。空间划分:将邻域划分为多个立体角度立方体(bins)。直方图构建:在每个立方体中,统计法向量方向和颜色信息,以构建描述子直方图。

2024-11-09 14:07:40 418

原创 FPFH算法计算特征描述子

FPFH通过对点云中每个点与其邻域内其他点之间的几何关系进行分析来提取特征。与PFH不同,FPFH在计算过程中使用了一种加速策略,将几何关系的计算分为两步,以减少计算复杂度。简化PFH计算(SPFH):对每个点仅考虑其直接邻域中的点进行几何关系计算。加速的FPFH构建:利用SPFH的结果,通过邻域点的SPFH进行加权累加得到最终的FPFH特征。

2024-11-09 14:06:53 390

原创 PFH算法计算特征描述子

PFH 描述子通过分析每个点与其邻域中其他点之间的几何关系来描述局部特征。法向量计算:计算每个点的法向量,这对于表面描述是关键。几何关系:分析每一对邻域点之间的几何关系,通常使用三个角度(α, φ, θ)来描述。直方图构建:将这些角度参数统计成直方图,以形成特征向量。

2024-11-09 14:05:56 141

原创 点云任意平面镜像变换

假设给定一个平面,其方程为:其中,(a,b,c)是平面的法向量,d 是该平面的距离参数。镜像操作的目标是将一个点 P(x,y,z)映射到其关于平面的镜像点 P′(x′,y′,z′)。

2024-11-08 21:33:11 277

原创 基于曲率的SIFT算法关键点检测

3D SIFT算法的核心思想是通过对点云数据进行尺度空间的构建,然后在尺度空间中检测极值点作为关键点。该算法在3D空间中建立一个尺度空间,通过高斯模糊和下采样,生成一系列不同尺度的点云。然后,在这些尺度上检测局部极值点。

2024-11-08 21:21:18 396

原创 基于强度的SIFT算法关键点检测

3D SIFT算法的核心思想是通过对点云数据进行尺度空间的构建,然后在尺度空间中检测极值点作为关键点。该算法在3D空间中建立一个尺度空间,通过高斯模糊和下采样,生成一系列不同尺度的点云。然后,在这些尺度上检测局部极值点。

2024-11-08 21:12:35 415

原创 基于RGB的SIFT算法关键点检测

3D SIFT算法的核心思想是通过对点云数据进行尺度空间的构建,然后在尺度空间中检测极值点作为关键点。该算法在3D空间中建立一个尺度空间,通过高斯模糊和下采样,生成一系列不同尺度的点云。然后,在这些尺度上检测局部极值点。

2024-11-08 21:08:52 635

原创 基于高度的SIFT算法关键点检测

3D SIFT算法的核心思想是通过对点云数据进行尺度空间的构建,然后在尺度空间中检测极值点作为关键点。该算法在3D空间中建立一个尺度空间,通过高斯模糊和下采样,生成一系列不同尺度的点云。然后,在这些尺度上检测局部极值点。

2024-11-08 21:03:08 571

原创 SUSAN算法关键点提取

SUSAN 算法的核心是通过计算一个点及其邻域点的相似性来判断点的显著性。在3D点云中,这种相似性通常基于点的几何位置和属性(例如法向量或颜色)。

2024-11-08 20:42:15 493

原创 Harris3D算法关键点检测

Harris 3D 算法基于局部表面的几何特性,采用特征值分解来识别具有显著变化的点。通过分析协方差矩阵的特征值,可以识别出具有角点性质的点。

2024-11-08 20:16:07 329

原创 ISS算法关键点提取

ISS的关键思想是通过分析点的局部几何结构,基于特征值分解来稳定地选择关键点。ISS算法识别具有显著几何特征的点,通常这些点的局部邻域内几何变化较大。

2024-11-08 20:05:09 429

原创 简单的点云包围球算法

包围球是一种几何简化工具,用于通过一个球体来近似表示点云在三维空间中的分布。包围球通过球心和半径定义,目标是在保证包含所有点的前提下,球的半径尽可能小。

2024-11-08 19:53:51 283

原创 点云边界提取

根据点云中每个点的法线方向变化和点的局部几何特征来识别哪些点可能是边界点。边界点通常是在物体边缘、法线变化显著的区域。

2024-11-08 09:11:32 377

原创 主成分分析法(PCA)求OBB包围盒

PCA的基本思想是通过线性变换,将原始数据投影到一个新的坐标系中,这个坐标系由数据的主要方向组成。对于点云数据,PCA可以找出点云的主要方向,从而计算出一个与主要方向对齐的最小包围盒。

2024-11-08 09:11:03 320

原创 利用点云最值求AABB包围盒

AABB的核心思想是通过对点云的坐标进行最值搜索,确定一个能够完全包围点云的最小长方体。由于AABB是轴对齐的,因此计算和判断都相对简单。

2024-11-08 09:10:27 212

原创 最小二乘(MLS)求点云法向量

MLS算法的基本思想是通过在点云的局部邻域内拟合一个光滑曲面,如平面或多项式曲面,以此来重建和处理点云数据。对于法向量估计,MLS通常在每个点的邻域内拟合局部平面,然后从该平面的法向量作为点的法向量。

2024-11-08 09:09:50 340

原创 积分图求点云法向量

积分图(Integral Image)是一种用于快速计算二维图像中的任意矩形区域内的像素和的技术。它最初被提出用于加速特征计算,如Haar-like特征,后来被广泛应用于图像处理和计算机视觉的各种任务中。利用积分图进行法向量估计旨在通过快速计算点云的局部区域特征来高效估计法向量。

2024-11-08 09:09:20 435

原创 点云高斯曲率和平均曲率计算

高斯曲率 (Gaussian Curvature):高斯曲率是曲面的内在属性,定义为两个主曲率的乘积。它反映了曲面在该点的内在弯曲程度。平均曲率 (Mean Curvature):平均曲率定义为两个主曲率的平均值,反映了曲面在该点的平均弯曲程度。

2024-11-08 09:08:25 544

原创 点云主曲率的计算

曲率是描述曲面几何形状的重要量。对于三维点云,通常使用主曲率来描述局部几何特征。主曲率包括最大曲率和最小曲率,反映了曲面在某点的最主要的弯曲程度。在点云处理中,通常使用的曲率估计方法是基于法线估计和协方差矩阵分析的。通过分析点云中某点的邻域的协方差矩阵,可以计算出该点的曲率。

2024-11-07 20:54:56 472

原创 求点云法向量并可视化

计算法线的基本思想是通过分析点云中的局部几何结构来确定每个点的法线方向。这通常通过主成分分析(PCA)来实现,方法是找到局部平面的最佳拟合。

2024-11-07 20:41:10 369

原创 点云特征提取概念

点云描述子全称为3D形状内容描述子(3D shape contexts) 采用一个向量描述曲面上指定点及邻域的形状特征,通过匹配向量的值来建立不同曲面点的对应关系,此相邻则称为指定点的描述子。经典描述子的3D形状内容描述子结构简单,辨别力强,且对噪声不敏感。

2024-11-07 20:27:01 402

原创 欧拉角转轴角

欧拉角表示欧拉角由三个旋转角度组成,通常为(α,β,γ)。不同的旋转顺序(如XYZ、ZYX等)会影响最终的旋转结果。欧拉角容易造成万向节死锁问题。轴角表示由单位向量v=(vx,vy,vz)和旋转角度θ组成。描述绕轴vv旋转θθ角度的旋转。

2024-11-07 11:38:09 360

原创 轴角转欧拉角

轴角表示由单位向量 v=(vx,vy,vz) 和旋转角度 θ 组成。描述的是绕轴 v 旋转 θ 角度的旋转。欧拉角表示由三个旋转角度(α,β,γ)组成,通常分别对应绕固定坐标轴的旋转。欧拉角的顺序(例如,ZYX或XYZ)决定了旋转的顺序和方向。

2024-11-07 11:31:36 459

原创 四元素转轴角

四元数通常表示为 q=(w,x,y,z),其中 w 是实部,(x,y,z) 是虚部。四元数是一种可以有效避免万向节死锁的旋转表示,并且在插值时具有良好的性能。轴角表示由一个单位向量 v=(vx,vy,vz)和一个旋转角度 θ 组成,其中 v 表示旋转轴。

2024-11-07 11:26:01 442

原创 轴角转四元素

轴角表示由一个单位向量 v=(x,y,z)和一个旋转角度 θ 组成。四元数常表示为 q=(w,x,y,z),其中 ww 为实部,(x,y,z)为虚部,四元数是单位四元数,即满足 w2+x2+y2+z2=1。

2024-11-07 11:21:03 242

原创 旋转矩阵转轴角

旋转矩阵是一个3x3的正交矩阵,其行和列是正交单位向量。轴角表示由一个单位向量 v=(x,y,z) 和一个旋转角度 θ 组成。轴角表示是一种直观的旋转表示方式,特别适合描述单一旋转。

2024-11-07 11:14:29 520

原创 轴角转旋转矩阵

轴角表示由一个单位向量 v=(x,y,z)和一个旋转角度 θ 组成,其中 v 表示旋转轴,θ 表示绕该轴的旋转角度。旋转矩阵是一个正交矩阵,用于描述坐标系变换。

2024-11-07 11:09:46 419

原创 四元素转欧拉角

四元数由一个实部和三个虚部组成,通常记作 q=w+xi+yj+zk。欧拉角则通过一系列的角度描述旋转,常见的顺序有“yaw-pitch-roll”(ZYX顺序)。

2024-11-07 11:03:19 416

原创 欧拉角转四元素

欧拉角由三个角度组成,分别表示围绕不同轴的旋转。这些角度通常是绕固定坐标轴的旋转,例如“yaw-pitch-roll”顺序(ZYX顺序)。四元数 q=w+xi+yj+zk则是一个四维向量,用于表示旋转。

2024-11-07 10:58:49 479

原创 旋转矩阵转四元数

四元数由一个实部和三个虚部组成,通常记作 q=w+xi+yj+zk。要从旋转矩阵转换为四元数,需要确定四元数的四个分量 w,x,y,z ,使得它们所表示的旋转与给定的旋转矩阵相同。

2024-11-07 10:52:44 571

斯坦福常用的点云(可选)

斯坦福点云是指由斯坦福大学(Stanford University)发布的三维扫描数据集,通常用于计算机视觉和计算机图形学的研究。这些数据集提供了高质量的三维点云数据,广泛用于物体识别、三维重建、点云配准等领域的研究。

2024-11-09

常用的几何图形点云(感兴趣选)

常用的几何图形点云(感兴趣选)

2024-11-09

本案例常用的点云测试文件

本案例常用的点云测试文件

2024-11-09

TL文件使用三角形网格来近似物体的表面,因此它不直接存储点云数据 不过,我们可以从STL文件中提取点云数据,即从三角形顶点中提取

TL文件使用三角形网格来近似物体的表面,因此它不直接存储点云数据 不过,我们可以从STL文件中提取点云数据,即从三角形顶点中提取

2024-11-09

AugmentedRealityWithArucoMarkers.rar

基于Aruco标记点的相框识别,并替换相框中的图片,视频,代码,示例图片,视频;

2024-03-05

app-seperation-semseg前景背景分离.rar

app-seperation-semseg图像的前景背景分离代码、示例图片

2024-03-05

AlphaBlending.rar

计算图像的计算alpha blending;

2024-03-05

AgeGender性别年龄识别.rar

AgeGender性别年龄识别

2024-03-05

对比度增强评估数据库(CEED2016)

该CEED2016是新开发的图像数据库,专门用于对比度增强评估。该数据库包含 30 张原始彩色图像和 180 张使用六种不同 CE 方法获得的增强图像。该数据库是用我们自己捕获的图像和图像处理社区使用的一些常见图片构建的。 主观实验在巴黎第13大学、巴黎索邦大学信息与运输实验室(L2TI)进行。图像在黑暗的房间环境中显示在经过校准的液晶显示器上,以避免背景照明适应出现任何问题。来自不同年龄组、性别和背景的23名观察员、10名专家和13名非专家参与了实验。 为了获得排名分数,我们采用了基于平衡的成对偏好排名协议。主观实验的界面是在Matlab中开发的,对于每个原始图像,我们随机向观察者显示所有可能的增强图像对组合。我们还在屏幕中央显示了原始图像(左右显示一对增强图像),以方便分析CE的后遗症。观察者可以选择对同样相似的刺激进行排名。在 PC 排名协议中,每个增强图像都与其他图像成对比较,排名结果存储在偏好矩阵中

2024-03-03

用于图像增强的内窥镜真实合成曝光过度和曝光不足帧

在内窥镜检查中,由于中空器官内壁的光反射而出现曝光误差是很常见的。例如,当内窥镜的尖端(有光)指向褶皱时,这些结构会反射光线,引起过度曝光,而镜框另一端可能会出现曝光不足的区域。目前,增强曝光误差的方法需要配对数据,即损坏的帧及其各自的地面实况(即未损坏或干净的图像)。例如,对于自然图像,已经提出了包含常见现实生活图像的LOL或MIT-Adobe FiveK数据集。这些配对数据集允许研究人员利用标准化的地面实况图像来训练和评估他们的模型。我们的工作旨在通过使用GANs创建一个没有任何曝光误差的真实图像和具有曝光误差的相同图像的配对数据集。 该数据集由三个独立的数据集组成,其中包含 i) 正常内窥镜帧(无曝光误差)、ii) 合成曝光过度帧和 iii) 合成曝光不足帧。因此,我们有 1,231 个真实曝光过度对和 985 个真实曝光不足对;总共 2,216 对帧,即 4432 帧。由于我们创建合成数据的方法是随机的,因此通过数据的分布在曝光强度上有所不同。

2024-03-03

撒哈拉LMC手语数据库.zip

Sahand LMC 手语数据库由 32 个类别组成,包括 24 个美国字母(J 和 Z 被排除在外,因为它们是动态手势)和 0 到 9 的数字(6 和 w 的手势,9 和 F 的手势相同)。每类数据库包含 2000 个样本。该数据库由网络摄像头和 Leap Motion 控制器 (LMC) 收集。网络摄像头拍摄的图像背景相对简单。用户被要求在LMC周围移动和旋转她的手,以捕捉手的不同视图。LMC提供的数据库采用结构格式。Sahand LMC 手语数据库由 32 个类别组成,包括 24 个美国字母(J 和 Z 被排除在外,因为它们是动态手势)和 0 到 9 的数字(6 和 w 的手势,9 和 F 的手势相同)。每类数据库包含 2000 个样本。该数据库由网络摄像头和 Leap Motion 控制器 (LMC) 收集。网络摄像头拍摄的图像背景相对简单。用户被要求在LMC周围移动和旋转她的手,以捕捉手的不同视图。LMC提供的数据库采用结构格式。

2024-03-03

NTU Microsoft Kinect手持式数据.zip

这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x 10个变体。这是一个手势的RGB-D数据集,10个受试者 x 10个手势 x

2024-03-03

Jochen Triesch静态手势数据库2.zip

tiff 格式的图像。手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。

2024-03-03

Jochen Triesch静态手势数据库

PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y),24 人,3 种背景(浅色、深色、复杂)。PGM 图像,10 种手部姿势(A、B、C、D、G、H、I、L、V、Y)

2024-03-03

包含具有年龄的人脸的图像数据集 面部年龄数据集

关于数据集 包含具有年龄的人脸的图像数据集。 内容 有 99 个文件夹,每个文件夹的名称代表文件夹内面孔的年龄。

2024-03-03

树上芒果实例分割数据集

为树上芒果检测和分割而创建的数据集。使用带有多边形区域注释的VGG图像注释工具(Dutta & Zisserman 2019)对图像进行注释。两个文件夹包含用于训练和文本图像集的 COCO 注释格式的图像和 JSON 注释文件。数据集描述如下: 文件夹 1 - 平铺图像 - 总计 542 张(训练 + 测试) 640 x 540 像素的平铺图像(蜂蜜金和凯特品种) 文件夹 2 - 单个芒果剪 - 总计 1200 个(训练 + 测试) 剪(蜂蜜金和凯特品种)

2024-03-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除