欧拉回路基本概念+判断+求解

1.定义

如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路。
如果图G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路。
具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉通路但不具有欧拉回路的图称为半欧拉图。

2. 定理及推论

欧拉通路和欧拉回路的判定是很简单的,请看下面的定理及推论。

无向图G存在欧拉通路的充要条件是:

G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点。

推论1:

1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。
2) 当G是无奇度结点的连通图时,G必有欧拉回路。
3) G为欧拉图(存在欧拉回路)的充分必要条件是G为无奇度结点的连通图。

 

有向图D存在欧拉通路的充要条件是:

D为有向图,D的基图连通,并且所有顶点的出度与入度都相等;或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1。

推论2:
1) 当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度都相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。
2) 当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。
3) 有向图D为有向欧拉图的充分必要条件是D的基图为连通图,并且所有顶点的出、入度都相等。

 

3.欧拉通路回路存在的判断

根据定理和推论,我们可以很好的找到欧拉通路回路的判断方法,定理和推论是来自离散数学的内容,这里就给出简明的判断方法:

A.判断欧拉通路是否存在的方法

有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。

无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。

B.判断欧拉回路是否存在的方法

有向图:图连通,所有的顶点出度=入度。

无向图:图连通,所有顶点都是偶数度。

 

4.欧拉回路的应用

A.哥尼斯堡七桥问题

B.一笔画问题

C.旋转鼓轮的设计

 

5.欧拉回路的求解

A.  DFS搜索求解欧拉回路。

基本思路:利用欧拉定理判断出一个图存在欧拉回路或欧拉通路后,选择一个正确的起始顶点,用DFS算法遍历所有的边(每一条边只遍历一次),遇到走不通就回退。在搜索前进方向上将遍历过的边按顺序记录下来。这组边的排列就组成了一条欧拉通路或回路。

 

 1 #include<cstdio>
 2 #include<stdio.h>
 3 #include<cstring>
 4 #include<algorithm>
 5 #define MAX 2010
 6 using namespace std;
 7 int maps[MAX][MAX];
 8 int in[MAX];
 9 int t[MAX];
10 int flag;
11 int k;
12 int Max,Min;
13 int DFS(int x)
14 {
15     int i;
16     for(i=Min;i<=Max;i++)
17     {
18         if(maps[x][i])///从任意一个与它相连的点出发
19         {
20             maps[x][i]--;///删去遍历完的边
21             maps[i][x]--;
22             DFS(i);
23         }
24     }
25     t[++k]=x;///记录路径,因为是递归所有倒着记
26 }
27 int main()
28 {
29     int n,i,x,y;
30     Max=-9999;
31     Min=9999;
32     flag=0;
33     scanf("%d",&n);
34     for(i=1;i<=n;i++)
35     {
36         scanf("%d%d",&x,&y);
37         maps[x][y]++;
38         maps[y][x]++;
39         Max=max(x,max(y,Max));
40         Min=min(x,min(y,Min));
41         in[x]++;
42         in[y]++;
43     }
44     for(i=Min;i<=Max;i++)
45     {
46         if(in[i]%2)///存在奇度点,说明是欧拉通路
47         {
48             flag=1;
49             DFS(i);
50             break;
51         }
52     }
53     if(!flag)///全为偶度点,从标号最小的开始找
54     {
55         DFS(Min);
56     }
57     for(i=k;i>=1;i--)
58     {
59         printf("%d\n",t[i]);
60     }
61     return 0;
62 }
View Code

 

B.  Fleury(佛罗莱)算法

Fleury算法是对DFS爆搜的一种改进,使用DFS漫不经心的随意走是效率不高的,Fleury是一种有效的算法。

 

关键是能不走桥就不去走桥,实在无路可走了才去走桥!!!

 

 1 #include <cstdlib>
 2 #include <cstring>
 3 #include <cstdio>
 4 #include <iostream>
 5 #include <algorithm>
 6 using namespace std;
 7 int ans[200];
 8 int top;
 9 int N,M;
10 int mp[200][200];
11 void dfs(int x)
12 {
13     int i;
14     top++;
15     ans[top]=x;
16     for (i=1; i<=N; i++)
17     {
18         if(mp[x][i]>0)
19         {
20             mp[x][i]=mp[i][x]=0;///删除此边
21             dfs(i);
22             break;
23         }
24     }
25 }
26 
27 void fleury(int x)
28 {
29     int brige,i;
30     top=1;
31     ans[top]=x;///将起点放入Euler路径中
32     while(top>=0)
33     {
34         brige=0;
35         for (i=1; i<=N; i++) /// 试图搜索一条边不是割边(桥)
36         {
37             if(mp[ans[top]][i]>0)///存在一条可以扩展的边
38             {
39                 brige=1;
40                 break;
41             }
42         }
43         if (!brige)/// 如果没有点可以扩展,输出并出栈
44         {
45             printf("%d ", ans[top]);
46             top--;
47         }
48         else     /// 否则继续搜索欧拉路径
49         {
50             top--;///为了回溯
51             dfs(ans[top+1]);
52         }
53     }
54 }
55 
56 int main()
57 {
58     int x,y,deg,num,start,i,j;
59     scanf("%d%d",&N,&M);
60     memset(mp,0,sizeof (mp));
61     for(i=1;i<=M; i++)
62     {
63         scanf("%d%d",&x,&y);
64         mp[x][y]=1;
65         mp[y][x]=1;
66     }
67     num=0;
68     start=1;///这里初始化为1
69     for(i=1; i<=N; i++)
70     {
71         deg=0;
72         for(j=1; j<=N; j++)
73         {
74             deg+=mp[i][j];
75         }
76         if(deg%2==1)///奇度顶点
77         {
78             start=i;
79             num++;
80         }
81     }
82     if(num==0||num==2)
83     {
84         fleury(start);
85     }
86     else
87     {
88         puts("No Euler path");
89     }
90     return 0;
91 }
View Code

 

转载于:https://www.cnblogs.com/wkfvawl/p/9626163.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值