怎么判断是不是欧拉回路_欧拉回路基本概念+判断+求解

本文介绍了欧拉回路的概念,包括无向图和有向图中欧拉回路的存在条件。提供了判断欧拉回路的方法,并通过DFS和Fleury算法来求解欧拉回路。同时,欧拉回路在解决实际问题如哥尼斯堡七桥问题和一笔画问题中有应用。
摘要由CSDN通过智能技术生成

1.定义

如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路。

如果图G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路。

具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉通路但不具有欧拉回路的图称为半欧拉图。

2. 定理及推论

欧拉通路和欧拉回路的判定是很简单的,请看下面的定理及推论。

无向图G存在欧拉通路的充要条件是:

G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点。

推论1:

1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。

2) 当G是无奇度结点的连通图时,G必有欧拉回路。

3) G为欧拉图(存在欧拉回路)的充分必要条件是G为无奇度结点的连通图。

有向图D存在欧拉通路的充要条件是:

D为有向图,D的基图连通,并且所有顶点的出度与入度都相等;或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1。

推论2:

1) 当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度都相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。

2) 当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。

3) 有向图D为有向欧拉图的充分必要条件是D的基图为连通图,并且所有顶点的出、入度都相等。

3.欧拉通路回路存在的判断

根据定理和推论,我们可以很好的找到欧拉通路回路的判断方法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值