LUOGU P1514 引水入城 (bfs)

本文详细解析了一种解决沙漠蓄水场问题的算法。通过BFS搜索策略,确定蓄水场对沙漠区域的连续贡献范围,进而求解最小覆盖区间,降低复杂度。文章分享了具体实现代码,包括状态搜索、区间覆盖判断等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

传送门

 

解题思路

拉了很长的战线,换了好几种写法终于过了。。首先每个蓄水场一定是对沙漠造成连续一段的贡献,所以可以$bfs$出每种状态,然后做一次最小区间覆盖,但这样的复杂度有点高。就每次只搜那些比左右高的点。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>

using namespace std;
const int MAXN = 505;
const int inf = 0x3f3f3f3f;

inline int rd(){
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
    while(isdigit(ch))  {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return f?x:-x;
}

int xx[4]={0,0,-1,1},yy[4]={-1,1,0,0};
int n,m,cnt,h[MAXN][MAXN],ans,num,t;
int vis[MAXN][MAXN];bool b[MAXN];
queue<int> Q[3];

struct Data{
    int l,r;
    friend bool operator<(const Data a,const Data b){
        return a.l==b.l?a.r<b.r:a.l<b.l;
    }
}data[MAXN];

void bfs(int x,int y){
    cnt++;Q[1].push(x);Q[2].push(y);data[cnt].l=inf;t++;vis[x][y]=t;
    while(!Q[1].empty()){
        int i=Q[1].front(),j=Q[2].front();Q[1].pop();Q[2].pop();
        if(i==n) {data[t].l=min(data[t].l,j);data[t].r=max(data[t].r,j);b[j]=1;}
        for(register int k=0;k<=3;k++){
            int ii=xx[k]+i,jj=yy[k]+j;
            if(ii<1 || ii>n || jj<1 || jj>m || vis[ii][jj]==t) continue;
            if(h[i][j]<=h[ii][jj]) continue;vis[ii][jj]=t;
//            if(ii==n) {data[t].l=min(data[t].l,jj);data[t].r=max(data[t].r,jj);b[jj]=1;}
            Q[1].push(ii);Q[2].push(jj);
        }
    }
//    if(data[cnt].l==inf) cnt--;
//    cout<<data[cnt].l<<" "<<data[cnt].r<<endl;
}

int main(){
    n=rd();m=rd();
    for(register int i=1;i<=n;i++)
        for(register int j=1;j<=m;j++)
            h[i][j]=rd();
    for(int i=1;i<=m;i++) 
        if(h[1][i]>=h[1][i-1] && h[1][i]>=h[1][i+1]) bfs(1,i);
    for(int i=1;i<=m;i++) if(!b[i]) ans++;
    if(ans) {puts("0");printf("%d\n",ans);return 0;}
    sort(data+1,data+1+cnt);int now=0;data[cnt+1].l=inf;
    for(int i=1;i<=cnt;i++) {
        int mx=0,p=i;if(data[p].r<=now) continue;
        while(data[p].l-now<=1) {mx=max(mx,data[p].r);p++;}
        now=mx;num++;i=p-1;
    }
    puts("1"),printf("%d",num);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/sdfzsyq/p/9769076.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值