在我的上上篇文章中,详解了BFS算法,并以迷宫为例题解释了其用法。
前情回顾:【C语言】BFS两千字超强解析 BFS迷宫问题图文详解 DFS与BFS的区别
在这篇文章中,我精选了几道典型例题,我们来通过刷题巩固bfs。写这篇文章之前,默认你已经掌握了bfs基础,所以这篇文章只会分析题目不会再讲bfs基础了哦。
一.洛谷P1746 离开中山路
题目详情
读完题的朋友,相信你现在已是胸有成竹,如果你已经阅读并理解了我的前一篇关于Bfs的文章,写出这题这不就如探囊取物般轻松吗? 这不就是迷宫题的变形?
你可以开始试着写一写,并提交感受accept的快乐吧!
不过既然我选了这题,那肯定是有值得讲的地方,此题有两个坑,需要给大家提示一下,让大家少走点弯路。
坑1
最开始,我直接把x1,y1,x2,y2都统一定为全局变量,结果编译器提示编译失败。
最后发现,其实是math.h里已经定义了一个y1
避坑大法:把x1,y1换成局部变量,作为参数传入bfs函数里即可。 因为局部会屏蔽全局。
坑2
数据的输入格式
本题是这样输入的,数字之间没有空格。而之前我们做的迷宫题,数字之间是有空格的。这就意味着,我们不能再使用两层for循环来实现二维数组的读入,而是直接一排一排的读入。
避坑大法:将二维数组设置为字符数组,然后只用一个for循环来读取字符串数据。
一个小改动
这题你看输入的样例,起点为(1,1),终点为(3,3)那么为了后续方便,不会造成越界,我们读取数据的时候也从(1,1)开始。
AC代码样例
上篇文章我是发的C语言版,手写的一个队列。那么这篇我就用C++自带的queue实现吧。
#include <iostream>
using namespace std;
#include <queue>
typedef pair<int, int> PII;
const int N = 1005;
int x2,y2, n;
char maze[N][N];
int dist[N][N];
queue <PII> q1;
int dx[4] = { -1,0,1,0 };
int dy[4] = { 0,1,0,-1 };
int bfs(int x1,int y1)
{
memset(dist, -1, sizeof(dist));
q1.push({ x1,y1 });//注意这里用大括号
dist[x1][y1] = 0;
while (!q1.empty())//当队列不为空
{
PII t = q1.front();
q1.pop();
for (int i = 0; i < 4; i++)
{
int x = t.first + dx[i];
int y = t.second + dy[i];
if (x > 0 && x <= n && y > 0 && y <= n && maze[x][y] == '0' && dist[x][y] == -1)
{
q1.push({ x,y });
dist[x][y] = dist[t.first][t.second] + 1;
}
if(dist[x2][y2]!=-1)
return dist[x2][y2];
}
}
return -1;
}
int main()
{
int x1, y1;
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%s", maze[i] + 1);
}
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
printf("%d\n",bfs(x1,y1));
return 0;
}
二.洛谷P1162 填涂颜色
题目详情
我想这题目名应该改为:完蛋!我被1包围了 哈哈
题目分析
我们先来分析一下样例。
我们的目标其实就是找出被1包围的0
而0又分为1外面的和1里面的,如何区分这两种0呢?
我们想起一位老朋友——状态数组。我们可以设置一个状态数组,把不用改为2的0的状态改为true,要改的设置成false即可。
对于外层的0,其实我们可以把那一团看成一个连通块。如图所示。
我们只需要从某一个位置开始搜,把所有符合条件的0搜完即可。而我们做过了bfs迷宫题,知道bfs可以把所有点都搜一遍,这不正好!!!我们把所有外层的0看成一个迷宫,把这个迷宫搜完不就得了。你看,这样我们又把一个陌生的题目转化成我们熟悉的题型了。
而问题又来了,我们用哪个点作为开始搜的起点呢?
按照平时的习惯,为了方便,我们从(1,1)开始输入数据。那么从(1,1)开始搜?但是我们思考一下起点的特点,它必须是0,而且它能与其它外层的0连通。对于上面的样例,确实可以成立。但万一(1,1)处本身就是1呢?而且如果最上层的0和最下层的0不互通该怎么办?就像这样—》
那行,我可以把最外层的一圈上的每个位置都作为起点, 都搜一遍。麻烦且不说,如果我拿出下面这个图,阁下又如何应对呢?
看来我们需要重新思考》》》
其实既然我们是从(1,1)开始录入数据,而且我们数组一般也开得比题目要求的大,我们是否可以人为的制造一层0,把我们的数据包围住?然后从(0,0)开始搜。是不是特别巧妙!这样做,完美解决了外层0不相通的问题。我们最后在输出的时候注意一下,即可不把最外层的0打印出来。
代码实现
#include <iostream>
using namespace std;
typedef pair<int, int> PII;
const int N = 35;
int n;
int maze[N][N];
bool state[N][N];
PII queue[N * N];
int dx[4] = { -1,0,1,0 };
int dy[4] = { 0,1,0,-1 };
void bfs(int x1, int y1)
{
int head = 0; int tail = 0;
queue[0] = { x1,y1 };
state[x1][y1] = true;
while (head <= tail)
{
PII t = queue[head];
head++;
for (int i = 0; i < 4; i++)
{
int x = t.first + dx[i];
int y = t.second + dy[i];
if (x >= 0 && x <= n+1 && y >= 0 && y <= n+1
&& maze[x][y] == 0 && state[x][y] == false)//注意这里便是n+1
{
state[x][y] = true;
tail++;
queue[tail] = { x,y };
}
}
}
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <=n ; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &maze[i][j]);
}
}
bfs(0, 0);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (maze[i][j] == 0 && state[i][j] == false)
{
printf("2 ");
}
else
{
printf("%d ", maze[i][j]);
}
}
printf("\n");
}
return 0;
}
还有一些题就在下篇文章里继续聊!今天实在不想写了哈哈。
有什么问题欢迎在评论区提出,你的点赞收藏关注就是对我的最大支持!未来我会继续创作更多优质文章!