python求函数一二阶导_python – Keras&TensorFlow:获得f(x)wrt x的二阶导数,其中dim(x)=(1,n)...

我在Keras和TensorFlow一起工作.我有一个深度神经模型(预测自动编码器).我正在做一些与此类似的事情:

https://arxiv.org/abs/1612.00796 – 我试图了解输出中给定图层中变量的影响.

为此,我需要找到关于特定层输出的损失(L)的二阶导数(Hessian):

对角线条目就足够了. L是标量,s是1乘n.

我先尝试了什么:

dLds = tf.gradients(L, s) # works fine to get first order derivatives

d2Lds2 = tf.gradients(dLds, s) # throws an error

TypeError: Second-order gradient for while loops not supported.

我也尝试过:

d2Lds2 = tf.hessians(L, s)

ValueError: Computing hessians is currently only supported for one-dimensional tensors. Element number 0 of `xs` has 2 dimensions.

我无法改变s的形状,因为它是神经网络的一部分(LSTM的状态).第一个维度(batch_size)已经设置为1,我认为我不能摆脱它.

我无法重塑s因为它打破了渐变的流动,例如:

tf.gradients(L, tf.reduce_sum(s, axis=0))

得到:

[None]

关于在这种情况下我该怎么做的任何想法?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值