排序:
默认
按更新时间
按访问量

当前深度神经网络模型压缩和加速都有哪些方法?

本期推荐的论文笔记来自 PaperWeekly 社区用户 @yanjoy。本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享、低秩分解、迁移/压缩卷积滤波器和知识精炼,论文对每一类方法的性能、相关应用、优势和缺陷等方面进行了独到分析。 关于作者:小一一,北京大学在读硕士,研究方向为深...

2018-11-13 14:56:47

阅读数:8

评论数:0

PQ(product quantization) 算法

转自:http://vividfree.github.io/    1. 引言 Product quantization,国内有人直译为乘积量化,这里的乘积是指笛卡尔积(Cartesian product),意思是指把原来的向量空间分解为若干个低维向量空间的笛卡尔积,并对分解得到的低维向量空间...

2018-11-05 14:25:44

阅读数:23

评论数:0

Nearest Neighbor Search

Product Quantizer2011年在IEEEE上发表的论文《Product Quantization for Nearest Neighbor Search》中提出来的. •提出目的:在内存和效率之间求得一个平衡,既保证图像索引结构需要的内存足够,又使得检索质量和速度比较好。 •思想...

2018-11-01 11:18:36

阅读数:19

评论数:0

【TensorFlow】quantization量化

一、 Question 1:How does Tensorflow do quantization and dequantization? Details  According to the blog post “https://petewarden.com/2016/05/03/how-to-q...

2018-10-22 14:31:46

阅读数:37

评论数:0

Winograd 方法快速计算卷积

在 ConvNet 中, 大部分的计算耗费在计算卷积的过程中, 尤其是在端上设备中, 对于性能的要求更为苛刻. 程序的性能优化是一个复杂而庞大的话题. 高性能计算就像系统设计一样, 虽然有一些指导原则, 但是, 对于不同的场景需要有不同的设计方案, 因此, 对于同一个优化问题, 不同的人可能会给出...

2018-10-18 09:55:52

阅读数:82

评论数:0

caffe源码深入学习6:超级详细的im2col绘图解析,分析caffe卷积操作的底层实现

在先前的两篇博客中,笔者详细解析了caffe卷积层的定义与实现,可是在conv_layer.cpp与base_conv_layer.cpp中,卷积操作的实现仍然被隐藏,通过im2col_cpu函数和caffe_cpu_gemm函数(后者实现矩阵乘法)实现,在此篇博客中,笔者旨在向大家展示,caff...

2018-10-18 09:50:11

阅读数:36

评论数:0

移动端深度学习框架小结

1. 起因 昨天看到小米开源了深度学习框架MACE(https://github.com/XiaoMi/mace)  看到它有几个特点:异构加速、汇编级优化、支持各种框架的模型转换。 整体来看,料很足,特别是异构的支持,非常有诚意。  有了异构,就可以在CPU、GPU和DSP上跑不同的模型,实现...

2018-10-17 14:52:06

阅读数:44

评论数:0

分类模型评估——func()

“所有模型都是坏的,但有些模型是有用的”。建立模型之后,接下来就要去评估模型,以确定此模型是否“有用”。sklearn库的metrics模块提供各种评估方法,包括分类评估、回归评估、聚类评估和交叉验证等,本节主要介绍分类模型评估方法。   评估分类是判断预测值时否很好的与实际标记值相匹配。正确的鉴...

2018-10-11 15:52:53

阅读数:79

评论数:0

干货|机器学习算法线上部署方法

最近发现了两个比较好的工具和方法,未来会进行详细的探索和分析; H2O.AI ,H2O.ai,提供了MOJO和POJO的方式; preditionIO,Welcome to Apache PredictionIO™!,可以基于spark和hbase来提供相应的API服务,还是很方便的。 第三...

2018-10-10 17:19:06

阅读数:62

评论数:0

如何评估一个机器学习模型

为什么需要评估模型 评估训练出的模型是准确预测的关键。训练出的模型是建立在总数据的子集上的,其被称为训练数据,训练结束后该模型将被用于预测其它新数据。 通过训练集产生的模型,利用测试数据来进行模型效果的评估,评估结果以模型评估报告的形式呈现,在报告中通过AUC值、模型准确率、模型召回率等一系列...

2018-10-10 14:18:10

阅读数:50

评论数:0

over-fitting、under-fitting 与 regularization

机器学习中一个重要的话题便是模型的泛化能力,泛化能力强的模型才是好模型,对于训练好的模型,若在训练集表现差,不必说在测试集表现同样会很差,这可能是欠拟合导致;若模型在训练集表现非常好,却在测试集上差强人意,则这便是过拟合导致的,过拟合与欠拟合也可以用 Bias 与 Variance 的角度来解释,...

2018-10-10 14:15:29

阅读数:16

评论数:0

ros结合catkin_make和qtcreator

首先是ros官网关于IDE的教程: http://wiki.ros.org/IDEs#QtCreator 1、qtcreator安装 从官网上下载.run文件, https://info.qt.io/download-qt-for-application-development 只选择q...

2018-09-21 15:45:33

阅读数:36

评论数:0

3d segmentation Bin Picking

最近看到一个什么博览会上bin picking的演示,突然间发现bin picking的零件好像都是简单几何体或者简单几何体的组合,比如圆柱、弯管之类的。之前我一直以为现在bin picking已经能做到抓任意零件了,但是如果真的能做到,那这些公司肯定会重点展示。所以他们的算法肯定利用了简单几何体...

2018-09-12 09:53:28

阅读数:179

评论数:0

HDRNet QA

1: make hdr When I got an error on mutex.h I made de following substitution: #include "nsync_cv.h" -> #include &quo...

2018-09-10 13:56:45

阅读数:74

评论数:0

语义分割 - Semantic Segmentation Papers

Semantic Segmentation Adaptive Affinity Field for Semantic Segmentation – ECCV2018 [Paper] [HomePage] Pyramid Attention Network for Semantic Segmen...

2018-09-07 13:38:49

阅读数:70

评论数:0

深度学习图像标注工具汇总

对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具: Labelme Labelme适用于图像分割任务的数据集制作:  它来自下面的项目:https://...

2018-09-01 16:05:08

阅读数:119

评论数:0

先理解Mask R-CNN的工作原理,然后构建颜色填充器应用

    代码(包括作者构建的数据集和已训练的模型):https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon 什么是实例分割? 实例分割是一种在像素层面识别目标轮廓的任务,相比其他相关任务,实例分割是较难解...

2018-08-31 12:53:57

阅读数:52

评论数:0

Edge detect && image enhance

======================================================================================== Image enhance ================ [LLNET] [2015][DL] LLNet: A...

2018-08-28 15:55:31

阅读数:71

评论数:0

主体评级模型的开发过程

信用风险计量体系包括主体评级模型和债项评级两部分。主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡、B卡、C卡和F卡;债项评级模型通常按照主体的融资用途,分为企业融资模型、现金流融资模型和项目融资模型等。 我们主要讨论主体评级模型的开发过程。 一、项目流...

2018-08-27 18:10:26

阅读数:173

评论数:0

申请评分卡 之 特征工程

在上一篇文章中,我们对LendingClub的数据有了一个大致的了解,这次我将带大家把10万多条、145个字段的原始数据一步一步处理成建模所需输入的数据。 我们先按照上次一样导入数据,这里我将逾期15天以上的都当作正类 import pandas as pd import numpy as ...

2018-08-27 17:10:40

阅读数:84

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭