题目大意:
求字符集大小为$k$长度为$n$的经循环移位后为回文串的数量。
题解:
这题是D1里最神的吧
考虑一个长度为$n$回文串,将其循环移位后所有的串都是满足要求的串。
但是显然这样计算会算重。考虑什么情况下会算重。
即当我们将这个回文串移位$x$后,发现这个新字符串为一个回文串时,必然接下来的移位都是重复的。
那么当$x$为多少时,新字符串为一个回文串?
我们稍加分析就会发现x一定和回文串的最小循环节$d$有关。
考虑最小循环节若为偶数时,当$x==d/2$时,则会变为一个新的回文串。
反之,$x==d$时,会出现一个新的回文串。
那么我们设$F(d)$表示长度为$n$,字符集为$k$,最小循环节为d的字符串的数量。
显然会有$\sum_{d|n}F(d)==k^{\lceil \frac{n}{2}\rceil}$。
设$G(n)=k^{\lceil \frac{n}{2}\rceil}$。
由莫比乌斯反演则有$F(d)=\sum_{n|d}\mu(\frac{n}{d})G(n)$。
那么考虑循环节$d$为偶数的串对答案贡献应该为$\frac{d}{2}*F(d)$这个我们在上面已经分析过了。
反之,则有其贡献为$d*F(d)$。
那么$Ans=\sum_{d|n}F(d)\frac{d}{1+[d为偶数]}$。
我们设$H(d)=\frac{d}{1+[d为偶数]}$。
观察这个式子,发现直接求对于$1e18$的数据显然会T。考虑继续优化。
发现算法瓶颈在于$H(dm)$,思考$\sum_{d|x}\mu(d)*H(dm)$的性质。
由于$H(dm)$的值与奇偶性有关,那么我们分类讨论一下$m$和$\frac{n}{m}$之间奇偶性的关系。
考虑对于四种情况,我们(可以经过打表或者推导)会发现,当$m$为奇数且$\frac{n}{m}$为偶数时,$\sum_{d|\frac{n}{m}}\mu(d)H(dm)$为0,而另外三种情况都是$H(m)\sum_{d|\frac{n}{m}}\mu(d)H(d)$。
代码:
#include "bits/stdc++.h"
#define int long long
using namespace std;
inline int read () {
int s=0,k=1;char ch=getchar();
while (ch<'0'|ch>'9') ch=='-'?k=-1:0,ch=getchar();
while (ch>47&ch<='9') s=s*10+(ch^48),ch=getchar();
return s*k;
}
typedef long long ll;
inline ll R(ll x) {
return 1ll*rand()*rand()%x;
}
inline ll Mult ( ll a,ll b ,ll mod) {
return ( a*b - (ll)( (long double) a*b/mod )*mod + mod )% mod;
}
inline ll powmod(ll a,ll b,ll mod) {
ll ret=1;
while (b) {
if (b&1) ret = Mult(ret,a,mod);
b>>=1;a=Mult(a,a,mod);
}
return ret;
}
int prim[] = {2,3,5,7,11};
inline int Miller_Rabin(ll n) {
if (n==2) return true;
int s=20,i,t=0;
for (i=0;i<5;++i)
if (n==prim[i]) return true;
else if (n%prim[i]==0) return false;
ll u=n-1,x[30];
while (!(u&1))
++t,u>>=1;
// printf("n=%lld u=%l\n",n);
while (s--) {
ll a=1ll*rand ()*rand()%(n-2)+2;
x[0] = powmod (a,u,n);
for (i=1;i<=t;++i) {
x[i] = Mult(x[i-1],x[i-1],n);
if (x[i]==1&&x[i-1]!=1&&x[i-1]!=n-1) return false;
}
if (x[t]!=1) return false ;
}
return true;
}
inline ll gcd (ll a,ll b) {
return b?gcd(b,a%b):a;
}
inline ll Pollard_Rho(ll n,int c) {
ll i=1,k=2,x=rand()%(n-1)+1,y=x;
// printf("n=%lld\n",n);
while (1) {
++i ;
x = (Mult(x,x,n) + c)%n;
ll p = gcd (y-x+n,n);
if (p!=1&&p!=n) return p;
if (y==x) return n;
if (i==k) {
y=x;
k<<=1;
}
}
}
ll f[100],mod;
int cnt;
inline void find(ll n) {
if (n==1) return ;
// printf("%lld\n",n);
if (Miller_Rabin(n)) {
f[++cnt]=n;
return ;
}
//while (n==13);
ll p=n;
while (p==n) p = Pollard_Rho(n,R(n-1));
// printf("p=%lld\n",p);
find(p);
find(n/p);
}
ll n,k;
int m,num[100];
ll p[100][100];
ll ans;
inline void add (ll &x,ll y) {
x+=y;
//printf("x=%lld y=%lld mod=%lld\n",x,y,mod);
if (x>=mod) x-=mod;
if (x<0) x+=mod;
}
inline void dfs(int step,ll d,ll S) {
if (step>m) {
if ((d&1)==0&&(n/d&1)) return ;
ll tmp=n/d;
//printf("tmp=%lld d=%lld\n",tmp,d);
//printf("k=%lld %lld %lld %lld\n",k,powmod(k,(tmp+1)/2,mod),((tmp&1)?tmp:tmp/2),S);
add ( ans , Mult(Mult(powmod(k,(tmp+1)/2,mod),((tmp&1)?tmp:tmp/2),mod),S,mod));
return ;
}
dfs (step+1,d,S);
for (int i=1;i<=num[step];++i)
dfs (step + 1, d*p[step][i],S*(1-p[step][1]));
//printf("step=%d\n",step);
}
main ()
{
//freopen("3.in","r",stdin);
//freopen("3.out","w",stdout);
int T=read();
while (T--) {
scanf("%lld%lld",&n,&k),mod=read();
k%=mod;
cnt=m=0;
ans =0;
find(n);
sort(f+1,f+cnt+1);
memset(p,0,sizeof p);
for (int i=1,j=1;i<=cnt;i=j) {
p[++m][0]=1;
p[m][1]=f[i];
num[m]=1;
// printf("p=%lld\n",f[i]);
for (j=i+1;j<=cnt;++j)
if (f[j]!=f[j-1]) break;
else p[m][j-i+1]=p[m][j-i]*f[j];
num[m]=j-i;
// printf("num=%lld\n",num[m]);
}
dfs(1,1,1);
printf("%lld\n",ans);
}
return 0;
}