一、动量守恒与动能守恒联立推导弹性碰撞中速度关系
高中经典弹性碰撞模型中的速度推导。已知两小球质量
,
,其中
,方向向右为正。
满足完全弹性碰撞,碰撞过程中能量不损失
初始动量守恒方程:
①
动能守恒方程:
②
将方程②系数化1后按照同质量移项
平方差展开得到
③
将①式按照质量移项得到
④
将方程③④作比
得到质心运动守恒公式
也称为相对速度不变,即碰撞前后两球相对速度不变
代入方程①
分离得
⑤
同理
⑥
⑤⑥即为所求速度关系
通过上述公式易得“一静一动”模型速度关系
让⑤,⑥式中的
可得
二、恢复系数与各种碰撞情况的讨论
1.恢复系数
恢复系数恢复系数能反映碰撞时物体变形恢复能力的参数
从上一节的速度推导中获得相对速度守恒公式
所以在弹性碰撞中恢复系数 e=
当发生完全非弹性碰撞时,动能损失最大
有速度关系:
,
2.情况讨论
只讨论“一静一动”模型中的速度关系
(1) 当
时
因为
此时
即碰撞后
速度几乎不变,而
以
两倍的速度向前运动。
(2)当
时
获得了最大动量
因
此时
即碰撞后
以原来的速率(速度大小不变,方向改变)弹回。获得最大动量
(3)当
时,速度交换,动量交换,动能交换。
此时
最大为
(4)完全非弹性碰撞的情况和计算技巧
特点没有恢复阶段,恢复系数为0
有共同速度
动能损失最大
动能损失
一个处理完全非弹性碰撞时的运算技巧
由于题目往往给出质量关系,可用
来直接通过质量关系和动量守恒求解动能变化。
例如
,
发生完全非弹性碰撞后求动能损失。
所具有的动能
,碰撞后的动能:
,
则损失的动能为
。
2019-12-2更新内容重新设计示意图并加入角标
增加完全非弹性碰撞的情况讨论
勘误一处
2020-1-16更新内容勘误一处