弹性碰撞后速度方向_碰撞模型中的速度关系推导

本文详细推导了高中物理中的弹性碰撞模型,重点阐述了动量守恒和动能守恒原理在完全弹性碰撞中的应用。通过数学公式得出质心运动守恒公式,并讨论了恢复系数的概念及其在不同碰撞情况下的表现,包括“一静一动”模型中的特殊情形,以及完全非弹性碰撞的特点和处理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、动量守恒与动能守恒联立推导弹性碰撞中速度关系

高中经典弹性碰撞模型中的速度推导。已知两小球质量

equation?tex=m_%7B1%7D%2Cm_%7B2%7D

equation?tex=v_%7B1%7D%2Cv_%7B2%7D ,其中

equation?tex=v_%7B1%7D%3Ev_%7B2%7D ,方向向右为正。

满足完全弹性碰撞,碰撞过程中能量不损失

初始动量守恒方程:

equation?tex=m_%7B1%7Dv_%7B1%7D%2Bm_%7B2%7Dv_%7B2%7D%3Dm_%7B1%7Dv_%7B1%7D%5E%7B%27%7D%2Bm_%7B2%7Dv_%7B2%7D%5E%7B%27%7D

动能守恒方程:

equation?tex=%5Cfrac%7B1%7D%7B2%7Dm_%7B1%7Dv_%7B1%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7Dm_%7B2%7Dv_%7B2%7D%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7Dm_%7B1%7Dv_%7B1%7D%5E%7B%272%7D%2B%5Cfrac%7B1%7D%7B2%7Dm_%7B2%7Dv_%7B2%7D%5E%7B%272%7D

将方程②系数化1后按照同质量移项

equation?tex=m_%7B1%7Dv_%7B1%7D%5E%7B2%7D%2Bm_%7B2%7Dv_%7B2%7D%5E%7B2%7D%3Dm_%7B1%7Dv_%7B1%7D%5E%7B%272%7D%2Bm_%7B2%7Dv_%7B2%7D%5E%7B%272%7D

equation?tex=m_%7B1%7Dv_%7B1%7D%5E%7B2%7D-m_%7B1%7Dv_%7B1%7D%5E%7B%272%7D%3Dm_%7B2%7Dv_%7B2%7D%5E%7B%272%7D-m_%7B2%7Dv_%7B2%7D%5E%7B2%7D

equation?tex=m_%7B1%7D%28v_%7B1%7D%5E%7B2%7D-v_%7B1%7D%5E%7B%272%7D%29%3Dm_%7B2%7D%28v_%7B2%7D%5E%7B%272%7D-v_%7B2%7D%5E%7B2%7D%29

平方差展开得到

equation?tex=m_%7B1%7D%28v_%7B1%7D-v_%7B1%7D%5E%7B%27%7D%29%28v_%7B1%7D%2Bv_%7B1%7D%5E%7B%27%7D%29%3Dm_%7B2%7D%28v_%7B2%7D%5E%7B%27%7D-v_%7B2%7D%29%28v_%7B2%7D%5E%7B%27%7D%2Bv_%7B2%7D%29

将①式按照质量移项得到

equation?tex=m_%7B1%7D%28v_%7B1%7D-v_%7B1%7D%5E%7B%27%7D%29%3Dm_%7B2%7D%28v_%7B2%7D%5E%7B%27%7D-v_%7B2%7D%29

将方程③④作比

equation?tex=%5Cfrac%7Bm_%7B1%7D%28v_%7B1%7D-v_%7B1%7D%5E%7B%27%7D%29%28v_%7B1%7D%2Bv_%7B1%7D%5E%7B%27%7D%29%3Dm_%7B2%7D%28v_%7B2%7D%5E%7B%27%7D-v_%7B2%7D%29%28v_%7B2%7D%5E%7B%27%7D%2Bv_%7B2%7D%29%7D%7Bm_%7B1%7D%28v_%7B1%7D-v_%7B1%7D%5E%7B%27%7D%29%3Dm_%7B2%7D%28v_%7B2%7D%5E%7B%27%7D-v_%7B2%7D%29%7D

equation?tex=v_%7B1%7D%2Bv_%7B1%7D%5E%7B%27%7D%3Dv_%7B2%7D%5E%7B%27%7D%2Bv_%7B2%7D

得到质心运动守恒公式

也称为相对速度不变,即碰撞前后两球相对速度不变

equation?tex=v_%7B1%7D-v_%7B2%7D%3Dv_%7B2%7D%5E%7B%27%7D-v_%7B1%7D%5E%7B%27%7D

equation?tex=v_%7B2%7D%5E%7B%27%7D%3Dv_%7B1%7D-v_%7B2%7D%2Bv_%7B1%7D%5E%7B%27%7D+

代入方程①

equation?tex=m_%7B1%7Dv_%7B1%7D%2Bm_%7B2%7Dv_%7B2%7D%3Dm_%7B1%7Dv_%7B1%7D%5E%7B%27%7D%2Bm_%7B2%7D%28v_%7B1%7D-v_%7B2%7D%2Bv_%7B1%7D%5E%7B%27%7D%29

equation?tex=m_%7B1%7Dv_%7B1%7D%2Bm_%7B2%7Dv_%7B2%7D%3Dm_%7B1%7Dv_%7B1%7D%5E%7B%27%7D%2Bm_%7B2%7Dv_%7B1%7D-m_%7B2%7Dv_%7B2%7D%2Bm_%7B2%7Dv_%7B1%7D%5E%7B%27%7D

equation?tex=m_%7B1%7Dv_%7B1%7D-m_%7B2%7Dv_%7B1%7D%2Bm_%7B2%7Dv_%7B2%7D%2Bm_%7B2%7Dv_%7B2%7D%3Dm_%7B1%7Dv_%7B1%7D%5E%7B%27%7D%2Bm_%7B2%7Dv_%7B1%7D%5E%7B%27%7D

equation?tex=%28m_%7B1%7D-m_%7B2%7D%29+v_%7B1%7D%2B2m_%7B2%7Dv_%7B2%7D%3D+%28m_%7B1%7D%2Bm_%7B2%7D%29+v_%7B1%7D%5E%7B%27%7D

分离得

equation?tex=v_%7B1%7D%5E%7B%27%7D%3D%5Cfrac%7B%28m_%7B1%7D-m_%7B2%7D%29v_%7B1%7D%2B2m_%7B2%7Dv_%7B2%7D%7D%7B+m_%7B1%7D%2Bm_%7B2%7D++%7D

同理

equation?tex=v_%7B2%7D%5E%7B%27%7D%3D%5Cfrac%7B%28m_%7B2%7D-m_%7B1%7D%29v_%7B2%7D%2B2m_%7B1%7Dv_%7B1%7D%7D%7B+m_%7B1%7D%2Bm_%7B2%7D++%7D

⑤⑥即为所求速度关系

通过上述公式易得“一静一动”模型速度关系

让⑤,⑥式中的

equation?tex=v_2%3D0+

可得

equation?tex=v_%7B1%7D%5E%7B%27%7D%3D%5Cfrac%7Bm_%7B1%7D-m_%7B2%7D%7D%7B+m_%7B1%7D%2Bm_%7B2%7D++%7Dv_%7B1%7D

equation?tex=v_%7B2%7D%5E%7B%27%7D%3D%5Cfrac%7B2m_%7B1%7D%7D%7B+m_%7B1%7D%2Bm_%7B2%7D++%7Dv_%7B1%7D

二、恢复系数与各种碰撞情况的讨论

1.恢复系数

恢复系数恢复系数能反映碰撞时物体变形恢复能力的参数

equation?tex=e%3D%5Cfrac%7B++v_%7B2%7D%5E%7B%27%7D-v_%7B1%7D%5E%7B%27%7D+++%7D%7B+++v_1+-+v_2+++%7D

从上一节的速度推导中获得相对速度守恒公式

equation?tex=v_%7B1%7D-v_%7B2%7D%3Dv_%7B2%7D%5E%7B%27%7D-v_%7B1%7D%5E%7B%27%7D

所以在弹性碰撞中恢复系数 e=

equation?tex=e%3D1

当发生完全非弹性碰撞时,动能损失最大

有速度关系:

equation?tex=v_%7B1%7D%5E%7B%27%7D%3Dv_%7B2%7D%5E%7B%27%7D ,

equation?tex=e%3D0

2.情况讨论

只讨论“一静一动”模型中的速度关系

(1) 当

equation?tex=m_1%5Cgg+m_2

因为

equation?tex=v_%7B2%7D%5E%7B%27%7D%3D%5Cfrac%7B2v_1%7D%7B1%2B%5Cfrac%7Bm_2%7D%7Bm_1%7D%7D

此时

equation?tex=v_%7B1%7D%5E%7B%27%7D%3Dv_1%2Cv_%7B2%7D%5E%7B%27%7D%5Capprox2v_1

即碰撞后

equation?tex=m_1+ 速度几乎不变,而

equation?tex=m_2+

equation?tex=m_1 两倍的速度向前运动。

(2)当

equation?tex=m_1%5Cll+m_2

equation?tex=m_1 获得了最大动量

equation?tex=p_%7B2%7D%5E%7B%27%7D%3Dm_%7B2%7Dv_%7B2%7D%5E%7B%27%7D%3D%5Cfrac%7B2m_%7B1%7Dm_%7B2%7Dv_%7B1%7D%7D%7Bm_%7B1%7D%2Bm_%7B2%7D%7D%3D%5Cfrac%7B2m_%7B1%7Dv_%7B1%7D%7D%7B%5Cfrac%7Bm_1%7D%7Bm_%7B2%7D%7D%2B1%7D

equation?tex=p_%7Bmax%7D%3D2m_1v_1%3D2p_1

此时

equation?tex=v_%7B1%7D%5E%7B%27%7D%3D-v_1

即碰撞后

equation?tex=m_1 以原来的速率(速度大小不变,方向改变)弹回。获得最大动量

(3)当

equation?tex=m_1%3Dm_2+ 时,速度交换,动量交换,动能交换。

equation?tex=E_%7Bk2%7D%3D%5Cfrac%7B1%7D%7B2%7Dm_%7B2%7Dv_%7B2%7D%5E%7B%272%7D%3D%5Cfrac%7B1%7D%7B2%7Dm_%7B2%7D%28%5Cfrac%7B2m_%7B1%7Dv_%7B1%7D%7D%7B+m_%7B1%7D%2Bm_%7B2%7D++%7D%29%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7Dm_1v_1%5E%7B2%7D%5Cfrac%7B4m_1m_2%7D%7B%28m_1%2Bm_2+%29%5E%7B2%7D%7D

此时

equation?tex=E_%7Bk2%7D 最大为

equation?tex=E_%7Bkm%7D%3D%5Cfrac%7B1%7D%7B2%7Dm_1v_1%5E2%3DE_%7Bk1%7D

(4)完全非弹性碰撞的情况和计算技巧

特点没有恢复阶段,恢复系数为0

有共同速度

动能损失最大

equation?tex=m_1v_1%2Bm_2v_2%3D%28m_1%2Bm_2%29v

动能损失

equation?tex=%5CDelta+E_k+%3D+%28%5Cfrac%7B1%7D%7B2%7Dm_1v_1%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7Dm_2v_2%5E%7B2%7D%29-%5Cfrac%7B1%7D%7B2%7D%28m_1%2Bm_2%29v%5E%7B2%7D

一个处理完全非弹性碰撞时的运算技巧

由于题目往往给出质量关系,可用

equation?tex=E_k%3D%5Cfrac%7Bp%5E2%7D%7B2m%7D 来直接通过质量关系和动量守恒求解动能变化。

例如

equation?tex=m_1%3Dm%2Cm_2%3Dm%2Cp_1%3Dp%2Cp_2%3D0 ,

equation?tex=m_1%2Cm_2 发生完全非弹性碰撞后求动能损失。

equation?tex=m_1 所具有的动能

equation?tex=E_%7Bk1%7D%3D%5Cfrac%7Bp%5E2%7D%7B2m%7D ,碰撞后的动能:

equation?tex=E_%7Bk1%7D%5E%7B%27%7D%3D%5Cfrac%7Bp%5E2%7D%7B2%5Ccdot2m%7D ,

则损失的动能为

equation?tex=E_%7Bk1%7D-E%5E%7B%27%7D_%7Bk1%7D%3D%5Cfrac%7B1%7D%7B2%7DE_k

2019-12-2更新内容重新设计示意图并加入角标

增加完全非弹性碰撞的情况讨论

勘误一处

2020-1-16更新内容勘误一处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值