线性回归闭式解推导

单词:

multivariate linear regression  多元线性回归

Here I want to show how the normal equation is derived. 此处是如何获得该等式。

Given the hypothesis function. 给出假设函数。 [haɪˈpɒθəsɪs]

 

多元线性回归应用举例:

幸福度预测:有身体、财富、学历等等自变量因素,有幸福度因变量因素,有一些样本数据,希望得到一个从这些自变量到幸福度这个因变量的映射函数。

 

解析过程:

回归函数:

\begin{equation}
h_{\theta}(x)=\theta_{0} x_{0}+\theta_{1} x_{1}+\cdots+\theta_{n} x_{n}
\end{equation}

最小化平方差损失:

\begin{equation}
J\left(\theta_{0 \ldots n}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
\end{equation}

此处的$x^{(i)}$和$y^{(i)}$是第i个样本数据。

我们需要学习的参数$\theta$可以,可以视为一个列向量:

\begin{equation}
\left( \begin{array}{c}{\theta_{0}} \\ {\theta_{1}} \\ {\dots} \\ {\theta_{n}}\end{array}\right)
\end{equation}

这样回归函数就是:$h_{\theta}(x)=x{\theta}$ 。${x}$是行向量形式。

 对于求和运算,实际上也可以变换成矩阵相乘的形式。上面的最小平方差损失,可以变换为:

\begin{equation}
J(\theta)=\frac{1}{2 m}(X \theta-y)^{T}(X \theta-y)
\end{equation}

这个地方的$X$是$m$行,$n$列的,$m$是样本数目,$n$是样本中的变量数目。$y$是一个列向量。

不去考虑前面的$\frac{1}{2 m}$这个系数。利用线性代数的知识将括号去掉:

\begin{equation}
\begin{array}{c}{J(\theta)=\left((X \theta)^{T}-y^{T}\right)(X \theta-y)} \\ {J(\theta)=(X \theta)^{T} X \theta-(X \theta)^{T} y-y^{T}(X \theta)+y^{T} y}\end{array}
\end{equation}

注意到:$X \theta$实际上一个列向量,$y$也是一个列向量,那么$(X \theta)^{T} y$和$y^{T}(X \theta)$是相等的。上式可以简化为:

\begin{equation}
J(\theta)=\theta^{T} X^{T} X \theta-2(X \theta)^{T} y+y^{T} y
\end{equation}

此处的$\theta$是未知数,可以对其求取偏微分运算,但是$\theta$是一个向量,这就涉及到向量求导了。

\begin{equation}
\frac{\partial J}{\partial \theta}=2 X^{T} X \theta-2 X^{T} y=0
\end{equation}

\begin{equation}
X^{T} X \theta=X^{T} y
\end{equation}

\begin{equation}
\theta=\left(X^{T} X\right)^{-1} X^{T} y
\end{equation}

转载于:https://www.cnblogs.com/yanxingang/p/10772503.html

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一元线性回归的目标是找到一条直线来拟合数据,使得拟合线距离数据点的误差最小化。最小二乘法是一种常见的用来求线性回归参数的方法。 假设我们有一组数据集合 {(x1, y1), (x2, y2), ..., (xn, yn)},其中 xi 是自变量,yi 是因变量。一元线性回归模型可以表示为 y = β0 + β1*x,其中 β0 和 β1 是待求的参数。 最小二乘法的目标是找到使得误差平方和最小化的参数值。我们定义误差 e = y - (β0 + β1*x),其中 e 是实际值与预测值之间的差异。我们将误差平方和定义为损失函数,即 L = ∑(e^2) = ∑((y - (β0 + β1*x))^2)。我们的目标是最小化损失函数 L。 为了求最小二乘法的参数,我们需要对损失函数 L 进行优化。我们可以通过对 β0 和 β1 分别求导,令导数为 0,从而得到参数的闭式。 首先对 β0 求导: ∂L/∂β0 = -2∑(y - (β0 + β1*x)) 令导数为 0,得到: ∑y - n*β0 - β1*∑x = 0 出 β0,得到: β0 = (∑y - β1*∑x)/n 然后对 β1 求导: ∂L/∂β1 = -2∑x(y - (β0 + β1*x)) 令导数为 0,得到: ∑xy - β0*∑x - β1*∑(x^2) = 0 将 β0 的值代入上式,得到: ∑xy - (∑y - β1*∑x)/n * ∑x - β1*∑(x^2) = 0 整理后可得: ∑xy - (∑x*∑y)/n = β1*(∑(x^2) - (∑x)^2/n) 出 β1,得到: β1 = (∑xy - (∑x*∑y)/n) / (∑(x^2) - (∑x)^2/n) 至此,我们得到了一元线性回归最小二乘法的参数推导

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值