自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(105)
  • 资源 (2)
  • 收藏
  • 关注

原创 深度学习-Dropout详解

文章目录前言1、什么是Dropout2、Dropout的数学原理3、Dropout是一个正则网络4、CNN的Dropout5、Dropout的变种5.1 高斯Dropout6、总结前言Dropout是深度学习中被广泛的应用到解决模型过拟合问题的策略,相信你对Dropout的计算方式和工作原理已了如指掌。这篇文章将更深入的探讨Dropout背后的数学原理,通过理解Dropout的数学原理,我们可以推导出几个设置丢失率的小技巧,通过这篇文章你也将对Dropout的底层原理有更深刻的了解。同时我们也将对Dro

2021-11-26 16:36:19 16663

原创 python导入库慢怎么办?教你一种下载到飞的办法

直接用cmd运行pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/就行,实测可以

2021-11-18 15:44:45 1027

原创 Ubuntu18.04下安装Anaconda3详细教程

亲自测试可用:https://blog.csdn.net/BigData_Mining/article/details/102954343

2021-11-15 14:28:46 860

原创 ubuntu系统下安装微信

包括微信的安装和bug处理亲自测试可用:https://blog.csdn.net/qq_37541097/article/details/119872041?spm=1001.2014.3001.5501

2021-11-13 17:43:19 766

原创 安装ubuntu双系统后,默认进入windows系统

原先的电脑只有windows系统,后来加装了ubuntu系统。但由于大部分时间仍然需要使用windows,但是默认启动项为ubuntu,难免会带来一些不便。将windows设为默认第一启动项的方法很简单进入ubuntu系统后,打开终端,查看grub的配置文件sudo gedit /boot/grub/grub.cfg找到如图所示的 set default="0”常见的双系统,windows都排在第三位,将此处的0改为2,保存即可若为多系统,可先观察一下windows排在第几位,若为第

2021-11-13 10:39:48 5313 3

原创 深度学习-感受野与有效感受野

文章目录感受野增加感受野有效感受野与反卷积的区别总结感受野卷积核的大小(高度和宽度)定义了一个区域的空间范围,改区域可以被卷积核在每个卷积步骤中修改,因而卷积核的大小称为卷积核的“感受野”。感受野(receptive field, RF),卷积神经网络每一层输出的特征图(feature map)上的特征点在原始图像上映射的区域大小,即特征点能“看”到的范围。越高(深)层的特征点描述的原图信息越全面,越能表述语义信息。神经元之所以无法对原始图像的所有信息进行感知,是因为在卷积神经网络中普遍使用卷积层和

2021-11-09 17:08:21 5201 3

原创 深度学习-神经网络卷积核理解

文章目录一、前言二、降维/升维增加非线性跨通道信息交互三、 应用实例四、卷积计算为什么卷积核都是奇数呢?一、前言卷积核(convolutional kernel):可以看作对某个局部的加权求和;它是对应局部感知,它的原理是在观察某个物体时我们既不能观察每个像素也不能一次观察整体,而是先从局部开始认识,这就对应了卷积。卷积核的大小一般有1x1,3x3和5x5的尺寸(一般是奇数x奇数)。卷积核的个数就对应输出的通道数(channels),这里需要说明的是对于输入的每个通道,输出每个通道上的卷积核是不一

2021-10-24 20:30:15 11394

原创 Ubuntu-server 磁盘如何扩容

参考:

2024-05-19 14:32:46 297

原创 Ubuntu系统下执行sudo apt update下报错无法链接192.168.0.121:10809 (192.168.0.121)。 - connect (113: 没有到主机的路由)

如果没有这个名字的文件,而只有一个名为apt.conf.d的文件夹。但是,在滑到最后的时候,我发现了一个不是数字开头的文件,名为proxy.conf。但是,一开始这个文件是只读的,没法直接修改里面的内容,所以还需要修改一下文件的读写权限。可以在目录下打开终端,输入sudo chmod 777 proxy.conf,然后执行sudo gedit proxy.conf,就可以修改里面的内容了。当然,为了保险起见,应该将该文件的读写权限给改回去,执行sudo chmod 444 proxy.conf即可。

2023-02-19 16:30:14 1575 1

原创 解决Ubuntu出现“E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用)E: 无法获取 dpkg 前端锁 ……”错误

E: 无法获取 dpkg 前端锁 (/var/lib/dpkg/lock-frontend),是否有其他进程正占用它?E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用)直接使用下面两行代码,之后就可以下载安装。

2023-02-19 16:25:05 770

原创 c++数据结构-栈

栈是限定仅在表的一端进行插人和删除操作的线性表,允许 插人和删除的一端称为栈顶(stack top),另一端称为栈底(stack bottom),不含任何数据元素的栈称为空栈。任何时刻出栈的元素都只 能是栈顶元素,即最后入栈者最先出栈,所以栈中元素除了具有线性关系外,还具有后进入栈。

2022-12-14 16:50:31 346

原创 机器学习-线性回归(从零实现以及简化实现)

如果有数据集,则跳过生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征 torch.normal(mean, std, size)定义一个生成数据样本的函数2、保存到excel文件中数据生成的为tensor数据类型,保存到excel文件中,要转换格式为numpy类型。打开文件如下所示:读取文件的numpy数据格式4、初始化模型参数初始化模型参数,通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。5、定义模型y=WTX+

2022-10-26 22:52:43 1967

原创 聚类-谱聚类

聚类算法将聚类问题转化成图的划分问题,最优划分原则是切图后不同的子图间边权重和最小,而子图内的边权重和最大,要找到满足这个优化问题的解是一个NP-难的问题,因此需要使用维数归约的思想去近似地解决这个问题。主要思想是把所有数据点看做是一个无向加权图 G = ( V,E ) 的顶点 V ,E 表示两点间的权重,数据点之间的相似度越高权重值越大。然后根据划分准则对所有数据点组成的图进行切图,使切图后不同的子图间的边权重和尽可能低,而子图内的边权重和尽可能高,从而实现聚类的效果。

2022-10-21 09:47:00 933

原创 LaTex下载与安装以及安装错误提示

文章目录1、LaTex安装请点击下面链接2、安装出现错误点击下面链接LaTeX文档是无格式的明文文档,格式都保存在源文件(或者模板)中;编译之后,LaTeX根据模板和指令生成格式,并形成最终文档。而Word则是带格式的文档,所有格式保存在文件中(且这个文件不是明文);Word文档的格式在编辑器中所见即所得。两者根据不同的场合各有优势。写论文用到的神器LaTex版本:LexLive2022 + TexStudio 4.2.3为大家提供免费的GPU,比谷歌calob平台使用更简单,注册就送100个小时。

2022-05-26 10:23:29 1364 1

原创 几个聚类算法

文章目录一、什么是聚类二、聚类算法2.1聚类数据集2.2亲和力传播2.3聚合聚类2.4K均值2.5Mini-Batch K均值2.6光谱聚类为大家提供免费的GPU,比谷歌calob平台使用更简单,注册就送100个小时。如果想领取的小伙伴点击下面链接。https://jtedu.cmri.cn/web#/register?token=OGIzYzEwNjgtMzU2MS00NzZiLWEzN2QtMDI5MTAxMTM0MGQw一、什么是聚类聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现

2022-05-14 09:55:03 2219 1

原创 免费使用GPU服务器

许多从事在AI领域的学生没有适合的服务器,导致自己的模型不能跑出理想的效果。由于自己电脑配置太低或者没有服务器使用。现在不同担心了,中国移动新推出的服务器可以免费使用了,不过是使用算力豆计算的。注册之后免费送3000,大概可以使用3天左右,当然可以通过自己的账号邀请人获得算力豆,每邀一个人送1000,各位抓紧时间吧。地址:分享给你一个宝藏 AI 学习和实战平台“九天·毕昇”,注册即可免费赢取 2000 个算力豆(100 小时 V100 使用时长),还可助我赢取 1000 个算力豆哦~ https://j

2022-04-30 21:20:16 2674 2

原创 ubuntu打开Anaconda、jupyter notebook

文章目录打开Anaconda界面进入jupyter notebook打开Anaconda界面在终端输入source ~/anaconda3/bin/activate root当终端变为:前缀为(base)(base) zyh@zyh-Nitro-AN515-55:~$之后再输入anaconda-navigator 就可以进入界面进入jupyter notebook在base状态下输入:jupyter notebook就可以进入jupyter notebook界面了...

2022-04-26 21:42:52 2368

原创 conda虚拟环境创建、删除、查看等操作

文章目录1、创建虚拟环境2、查看创建的虚拟环境3、删除创建的虚拟环境4、安装指定环境的package使用Anaconda创建虚拟环境好处:每次新建工程时直接新建一个虚拟环境,可以有效避免与其他程序的依赖环境产生冲突问题:如果在一台电脑上, 想开发多个不同的项目, 需要用到同一个包的不同版本, 如果使用上面的命令, 在同一个目录下安装或者更新, 新版本会覆盖以前的版本, 其它的项目就无法运行了.解决方案 : 虚拟环境作用 : 虚拟环境可以搭建独立的python运行环境, 使得单个项目的运行环境与其它项

2022-04-26 15:12:04 2311

原创 opencv实战0-OCR文档扫描识别

直接上代码# 导入工具包import numpy as npimport argparseimport cv2def order_points(pts): # 一共4个坐标点 rect = np.zeros((4, 2), dtype = "float32") # 按顺时针顺序找到对应坐标0123分别是 左上,右上,右下,左下 # 计算左上,右下 s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.a

2022-04-11 10:53:22 3166

原创 LE(拉普拉斯)数据降维方法

文章目录高维数据降维-拉普拉斯特征映射拉普拉斯矩阵1.1无向权重图1.2拉普拉斯矩阵1.3LE算法拉普拉斯特征映射基本步骤:例子高维数据降维-拉普拉斯特征映射高维数据降维是指采用某种映射方法,降低随机变量的数量,例如将数据点从高维空间映射到低维空间中,从而实现维度减少。降维的过程是通过对输入的原始数据特征进行学习,得到一个映射函数,实现将输入样本映射后到低维空间中之后,原始数据特征并没有明显的损失,通常情况下新空间的维度要小于原空间的维度。目前大部分降维算法是处理向量形式的数据。拉普拉斯矩阵1.1

2022-04-09 10:22:48 3249 1

原创 starGan-v2论文复现-代码完整

github:https://github.com/clovaai/stargan-v2Paper: https://arxiv.org/abs/1912.01865github上的代码没有预训练权重,并且给出下载地址也拒绝访问,所以基本上没有能跑的完整代码。如果需要完整代码:https://download.csdn.net/download/weixin_48167570/85093151文章目录解决问题内容1、框架效果图损失函数数据集解决问题理想的图片到图片的转换应该能够考虑到域内的各种

2022-04-08 15:15:08 6838 3

原创 主成分分析PCA

文章目录1、相关背景二、为什么要进行数据降维三、数据降维原理四、PCA原理详解4.1PCA的概念4.2 PCA原理五、PCA算法两种实现方法5.1基于特征值分解协方差矩阵PCA算法5.2基于SVD分解协方差矩阵实现PCA算法(奇异值)5.2.1 SVD分解矩阵原理1、相关背景在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相

2022-04-04 10:13:53 660

原创 自动编码器

文章目录自动编码器(AE)堆栈自动编码器SAE(深度自动编码器)自动编码器(AE)自动编码器是一种无监督的神经网络模型,可以学习到输入数据的隐含特征,称为编码(coding),同时用学习到的新特征可以重构出原始输入数据,称为解码(decoding)。从直观上来看,自动编码器可以用于特征降维,类似成分分析PCA,但是其相比PCA其性能更强,这是由于神经网络模型可以提取更有效的新特征。除了进行特征降维,自动编码器学习到的新特征可以送入有监督学习模型中,所以自动编码器可以起到特征提取器的作用。作为无监督学习模

2022-04-02 21:01:03 4287

原创 多视图聚类概念

文章目录一、多视图聚类方法分类1.1区分方法(基于相似性)的方法二、多视图聚类半监督多视图学习多视图聚类(MVC)的两个重要原则,互补性和共识原则一、多视图聚类方法分类生成(基于模型)的方法目的:试图了解数据的基本分布,并使用生成模型表示数据,每个模型表示一个集群。区分(基于相似性)的方法目的:直接优化包括相似性的目标函数,以最小化簇内的平均相似性并最大化簇间的平均相似性。根据如何组合多视图信息,可以分为以下五类:公共特征向量矩阵(多视图谱聚类)公共系数矩阵(多视图子空间聚类)公

2022-03-31 16:09:03 4736

原创 注意力机制-多头注意力

文章目录多头注意力多头注意力给定一个Query(查询)和一系列的Key-Value对一起映射出一个输出。包括下面三个关键性步骤:将Query与Key进行相似性度量将求得的相似性度量进行缩放标准化将权重与value进行加权在实践中,当给定相同的查询、键和值的集合时, 我们希望模型可以基于相同的注意力机制学习到不同的行为, 然后将不同的行为作为知识组合起来, 捕获序列内各种范围的依赖关系 (例如,短距离依赖和长距离依赖关系)。 因此,允许注意力机制组合使用查询、键和值的不同 子空间表示(repr

2022-03-29 21:44:34 19292 1

原创 Transformer注意力

文章目录Transformer1.1 模型1.2基于位置的前馈网络1.3残差连接和层规范化1.3编码器1.4解码器1.5小结TransformerTransformer模型完全基于注意力机制,没有任何卷积层后循环神经网络层。尽管transform最初是应用于文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,列如语言、视觉、语音和强化学习领域。1.1 模型Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,transformer是由编码器和解

2022-03-29 15:48:52 3522

原创 核回归注意力机制

文章目录注意力机制1.1注意力提示1.1.1生物学中的注意力提示1.1.2查询、键和值1.2注意力汇聚:Nadataya-Watson核回归1.2.1生成数据集1.2.2非参数注意力汇聚注意力机制灵长类动物的视觉系统接受了大量的感官输入, 这些感官输入远远超过了大脑能够完全处理的程度。 然而,并非所有刺激的影响都是相等的。 意识的聚集和专注使灵长类动物能够在复杂的视觉环境中将注意力引向感兴趣的物体,例如猎物和天敌。 只关注一小部分信息的能力对进化更加有意义,使人类得以生存和成功。自19世纪以来,科学家

2022-03-29 09:14:41 3216

原创 RBF神经网络-高斯核函数

文章目录一、RBF神经网络介绍1.1高斯函数代码实例高斯核函数中的Gamma一、RBF神经网络介绍从对函数的逼近功能而言,神经网络可分为全局逼近和局部逼近。局部逼近网络具有学习速度快的优点。径向基函数(Radial Basis Function,BRF)就属于局部逼近神经网络。是一种性能良好的前向网络,具有最佳逼近及克服局部极小值问题的性能。网络结构:首先是多个输入,中间的是径向基函数,常用的就是高斯核函数,最后是输出。1.1高斯函数高斯核函数的名称比较多,一下名称指的都是高斯核函数高斯核

2022-03-24 22:53:26 9141

原创 给jupyter notebook添加代码提示

当你打开jupyter notebook时,写代码的时候是默认没有代码提示的,这样虽然对新手可以练习写代码的能力,但是对有过经历的老程序员就会浪费时间了。在base环境依次输入以下四行命令:pip install jupyter_contrib_nbextensionsjupyter contrib nbextension install --userpip install jupyter_nbextensions_configuratorjupyter nbextensions_configur

2022-03-24 22:19:04 5955 2

原创 全网最详细SIFT算法原理实现

文章目录一、SIFT算法1.1什么是SIFT算法?1.2SIFT算法特点二、SIFT算法实质2.1SIFT算法实现特征匹配主要有以下三个流程:三、SIFT算法原理3.1图像金字塔3.2创建图像高斯金字塔3.3高斯金字塔创建总图四、尺度空间五、高斯差分金字塔5.1极值点(Key points)的精确定位5.2确定关键点(极值点)方向5.3关键点描述5.4关键点匹配六、总结一、SIFT算法1.1什么是SIFT算法?尺度不变特征转换(SIFT, Scale Invariant Feature Transfo

2022-03-24 16:33:13 46269 22

原创 Zotero安装和使用

文章目录一、注册Zotero新账号并下载二、配置Zotero一、注册Zotero新账号并下载登陆 Zoterohttps://www.zotero.org/user/register注册自己的Zotero 账号,提示:用户名 (username) 会生成个性域名,别乱起,以免未来不便。2.下载 Zotero 单机版https://www.zotero.org/downloadMac、Windows 系统通用。下载之后按照默认提示一路安装。二、配置Zotero1.打开Zotero

2022-03-16 14:56:16 15701

原创 机器学习-交叉熵、信息熵、相对熵、KL散度、交叉熵损失等函数讲解

文章目录熵信息熵相对熵、KL散度交叉熵softmax熵熵,是一个物理学概念,它表示一个系统的不确定性程度,或者说是一个系统的混乱系统信息熵n:表示随机变量可能的取值(i=1,2,…n)x:表示随机变量P(x):表示随机变量x的概率函数举一个生动的小例子:班花A从5位同学里挑选男朋友,宿舍1中全是帅哥,班花B在宿舍2中只有一个是帅哥。问题来了:班花A和班花B,那个班花在选择时,大脑更乱?从对选择每个人的概率中,由信息熵公式可得两位班花的大脑混乱程度。由此可知,班花A的大脑更混乱

2022-03-15 21:56:58 1816

原创 opencv-图像融合拼接

文章目录带拼接图片基于SIFT特征点和RANSAC方法得到的图像特征点匹配结果图像变换结果完整代码带拼接图片基于SIFT特征点和RANSAC方法得到的图像特征点匹配结果图像变换结果完整代码# 读取图像import cv2 #opencv读取的格式是BGRimport matplotlib.pyplot as pltimport numpy as np img=cv2.imread('right.jpg')img2=cv2.imread('left.jpg')def det

2022-03-10 19:28:25 712

原创 opencv-模板匹配

文章目录模板匹配多个模板匹配模板匹配模板匹配在图像处理中经常使用,该算法主要用于寻找图像中与模板图像相同的区域。此外,也用于图像定位,通过模板匹配找到指定的位置,然后进行后续的处理。模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)在进行模板匹配的时候,需要先制作模

2022-02-21 17:30:12 1099

原创 opencv-轮廓检测

文章目录轮廓检测1.1轮廓检测的作用:1.2方法1.3轮廓特征1.4轮廓近似1.5边界矩阵轮廓检测1.1轮廓检测的作用:可以检测图图像或者视频中物体的轮廓计算多边形边界,形状逼近和计算感兴趣区域1.2方法为了更精确地提取轮廓,请使用二值图。也就是说,在使用轮廓提取函数前,请将源图片运用阈值进行二值化(cv2.threshold())或者采用Canny边缘检测。findContours 函数会修改源图片,如果希望在轮廓检测后继续使用源图片,务必提前保存在另一个变量中。在OpenCV中,轮

2022-02-17 15:39:26 3681

原创 opencv-图像金字塔

文章目录图像金字塔1.1高斯金字塔(Gaussian pyramid)代码1.2拉普拉斯金字塔(Laplacian pyramid)图像金字塔图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。我们将一层

2022-02-16 15:29:54 288

原创 机器学习-支持向量机SVM

文章目录一支持向量1.0简介1.1算法思想软间隔实验部分SVM 是一个非常优雅的算法,具有完善的数学理论,虽然如今工业界用到的不多,但还是决定花点时间去写篇文章整理一下。一支持向量1.0简介支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失

2022-02-14 22:05:26 414

原创 机器学习-随机森林算法

文章目录前言集成学习的核心一、随机森林算法原理二、随机森林的优势与特征重要性指标2.1随机森林的优势2.2特征重要性指标三、提升算法概述四、Stacking堆叠模型五、硬投票和软投票1.1概念介绍1.2硬投票展示1.3硬投票和软投票效果对比硬投票:软投票六、Bagging策略决策边界展示八、OOB袋外数据的作用九、特征重要性可视化展示十、AdaBoost算法决策边界展示十一、Gradient Boosting梯度提升算法前言在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树

2022-02-14 16:36:19 9952 2

原创 机器学习-决策树

文章目录一、决策树二、熵的作用三、决策树构造实例四、信息增益率和gini系数五、决策树剪枝策略六、分类、回归任务一、决策树决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶子节点代表一种类别。从根节点开始一步步走到叶子节点。所有的数据最终都会落到叶子节点,既可以做分类也可以做回归将一家人看做为是一份数据,输入到决策树中,首先会进行年龄的判断是否大于15岁(人为主观认定的数值),如果大于15,就判断为有较小可能性玩游戏,小于或等于15岁则认为有较大的可

2022-02-12 17:37:44 1527

原创 机器学习 K-Means(++)算法

文章目录聚类概念聚类与KmeansK-Means算法步骤:优缺点K-Means++算法K-Means++算法的基本思路二分K-Means算法Mini Batch K-Means算法KMeans小结聚类概念无监督问题:没有标签聚类:相似的东西分到一组难点:如果评估,如何调参聚类算法KMeans是无监督学习的杰出代表之一。本文是记录自己过去学习KMeans算法的系统小结,将从“KMeans简介,优缺点与优化策略,结合EM算法解释KMeans以及手推KMeans”几个方面来尽可能彻底、清晰地搞明白这

2022-02-09 20:52:03 28818 4

人脸多角度生成算法,生成不多姿态的头部

使用多角度人脸生成算法,可以在不同的角度生成不同的头部姿态。

2022-05-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除