填充缺失值-999 python_详解Pandas 处理缺失值指令大全

本文详细介绍了如何使用Pandas库处理数据中的缺失值。包括使用isnull()检测缺失值,dropna()方法滤除缺失数据,fillna()方法填充缺失值,以及drop_duplicates()移除重复数据。此外,还探讨了map函数、replace方法和get_dummies()函数在数据转换中的应用。
摘要由CSDN通过智能技术生成

前言

运用pandas 库对所得到的数据进行数据清洗,复习一下相关的知识。

1 数据清洗

1.1 处理缺失数据

对于数值型数据,分为缺失值(NAN)和非缺失值,对于缺失值的检测,可以通过Python中pandas库的Series类对象的isnull方法进行检测。

import pandas as pd

import numpy as np

string_data = pd.Series(['Benzema', 'Messi', np.nan, 'Ronaldo'])

string_data.isnull()

对于缺失值,除了np.nan来表示,还可以用None来表示缺失值

string_data = None

1.2 滤除掉缺失数据

1.2.1 对于Series

使用dropna方法将NAN的数据过滤掉。

from numpy import nan as NA

import pandas as pd

data = pd.Series([1,NA,4.5,NA,5])

data.dropna()

另一种方法是使用布尔值索引对NAN数据进行过滤:

data[data.notnull()]

1.2.2 对于DataFrame

dropna()方法对于DataFrame的数据来说,会将含有NAN数据的行全部扔掉。

data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],

[NA, NA, NA], [NA, 6.5, 3.]])

data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值