2.1 可变序列与不可变序列
- 可变序列
- list、 bytearray、 array.array、 collections.deque 和 memoryview。
- 不可变序列
- tuple、 str 和 bytes。
2.2 列表推导和生成器表达式
- 列表推导是构建列表(list)的快捷方式
- 生成器表达式则可以用来创建其他任何类型的序列
ps:
**很多 Python 程序员都把列表推导(list comprehension)简称为 listcomps,生成
式表达器(generator expression)则称为 genexps。
2.2.1 列表推导和可读性
新手写法:
>>> symbols = '$¢£¥€¤'
>>> codes = []
>>> for symbol in symbols:
... codes.append(ord(symbol))
...
>>> codes
[36, 162, 163, 165, 8364, 164]
列表推导写法:
>>> symbols = '$¢£¥€¤'
>>> codes = [ord(symbol) for symbol in symbols]
>>> codes
[36, 162, 163, 165, 8364, 164]
列表推导不会再有变量泄漏的问题
2.2.2 列表推导同filter和map的比较
实例代码:
>>> symbols = '$¢£¥€¤'
>>> beyond_ascii = [ord(s) for s in symbols if ord(s) > 127]
>>> beyond_ascii
[162, 163, 165, 8364, 164]
>>> beyond_ascii = list(filter(lambda c: c > 127, map(ord, symbols)))
>>> beyond_ascii
[162, 163, 165, 8364, 164]
下面的这种写法,确实很难看。。。
2.2.3 笛卡儿积
笛卡尔积定义:
笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尓积(Cartesian product),又称直积,表示为X×Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员[3] 。
假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。
如果你需要一个列表,列表里是 3 种不同尺寸的 T 恤衫,每个尺寸都有 2 个颜色,示例
2-4 用列表推导算出了这个列表,列表里有 6 种组合。
>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> tshirts = [(color, size) for color in colors for size in sizes]
>>> tshirts
[('black', 'S'), ('black', 'M'), ('black', 'L'), ('white', 'S'),
('white', 'M'), ('white', 'L')]
>>> for color in colors:
... for size in sizes:
... print((color, size))
...
('black', 'S')
('black', 'M')
('black', 'L')
('white', 'S')
('white', 'M')
('white', 'L')
>>> tshirts = [(color, size) for size in sizes
for color in colors]
>>> tshirts
[('black', 'S'), ('white', 'S'), ('black', 'M'), ('white', 'M'),
('black', 'L'), ('white', 'L')]
通过调整for的顺序,来实现对内容的排序方式
2.2.4 生成器表达式
虽然也可以用列表推导来初始化元组、数组或其他序列类型,但是生成器表达式是更好的
选择。
这是因为生成器表达式背后遵守了迭代器协议,可以逐个地产出元素,而不是先建立一个完整的列表,然后再把这个列表传递到某个构造函数里。前面那种方式显然能够节省内存。
生成器表达式的语法跟列表推导差不多,只不过把方括号换成圆括号而已。
>>> symbols = '$¢£¥€¤'
>>> tuple(ord(symbol) for symbol in symbols)
(36, 162, 163, 165, 8364, 164)
>>> import array
>>> array.array('I', (ord(symbol) for symbol in symbols))
array('I', [36, 162, 163, 165, 8364, 164])
>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> for tshirt in ('%s %s' % (c, s) for c in colors for s in sizes): ➊
... print(tshirt)
...
black S
black M
black L
white S
white M
white L
2.3 元组不仅仅是不可变的列表
元祖可以用于没有字段名的记录
2.3.1 元组和记录
元组其实是对数据的记录:元组中的每个元素都存放了记录中一个字段的数据,外加这个字段的位置。正是这个位置信息给数据赋予了意义 。
如果把元组当作一些字段的集合,那么数量和位置信息就变得非常重要了
如果在任何的表达式里我们在元组内对元素排序,这些元素所携带的信息就会丢失,因为这些信息是跟它们的位置有关的
>>> lax_coordinates = (33.9425, -118.408056) ➊
>>> city, year, pop, chg, area = ('Tokyo', 2003, 32450, 0.66, 8014) ➋
>>> traveler_ids = [('USA', '31195855'), ('BRA', 'CE342567'), ➌
... ('ESP', 'XDA205856')]
>>> for passport in sorted(traveler_ids): ➍
... print('%s/%s' % passport) ➎
...
BRA/CE342567
ESP/XDA205856
USA/31195855
>>> for country, _ in traveler_ids: ➏
... print(country)
...
USA
BRA
ESP
for 循环可以分别提取元组里的元素,也叫作拆包(unpacking)。因为元组中第二个元素对我们没有什么用,所以它赋值给“_”占位符。
拆包让元组可以完美地被当作记录来使用
总结:记录与元祖——位置的重要性
2.3.2 元组拆包
*
运算符把一个可迭代对象拆开作为函数的参数:
>>> divmod(20, 8)
(2, 4)
>>> t = (20, 8)
>>> divmod(*t)
(2, 4)
>>> quotient, remainder = divmod(*t)
>>> quotient, remainder
(2, 4)
**用*来处理剩下的元素**
不仅仅可以用在*args
>>> a, b, *rest = range(5)
>>> a, b, rest
(0, 1, [2, 3, 4])
>>> a, b, *rest = range(3)
>>> a, b, rest
(0, 1, [2])
>>> a, b, *rest = range(2)
>>> a, b, rest
(0, 1, [])
可以出现在任意位置
>>> a, *body, c, d = range(5)
>>> a, body, c, d
(0, [1, 2], 3, 4)
>>> *head, b, c, d = range(5)
>>> head, b, c, d
([0, 1], 2, 3, 4)
2.3.3 嵌套元组拆包
metro_areas = [
('Tokyo','JP',36.933,(35.689722,139.691667)), # ➊
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
]
print('{:15} | {:^9} | {:^9}'.format('', 'lat.', 'long.'))
fmt = '{:15} | {:9.4f} | {:9.4f}'
for name, cc, pop, (latitude, longitude) in metro_areas: # ➋
if longitude <= 0: # ➌
print(fmt.format(name, latitude, longitude))