MapReduce作业的工作原理

         在Hadoop中,我们可以通过Job对象的submit()方法来运行MapReduce作业,也可以调用waitForCompletion()用于提交以前没有提交过的作业,并等待它的完成。其中,submit()方法调用封装了大量的处理细节,如下图所示:

    

 

         在最高层,有5个独立的实体。

         客户端,提交MapReduce作业;

         YARN资源管理器,负责协调集群上计算机资源的分配;

         YARN节点管理器,负责启动和监视集群中机器上的计算容器(container);

         MapReduce的application master,负责协调运行MapReduce作业的任务,它和MapReduce任务在容器中运行,这些容器由资源管理器分配并由节点管理器进行管理;

         分布式文件系统(一般为HDFS),用来与其他实体间共享作业文件。

 

         1 作业的提交

         Job的submit()方法创建一个内部的JobSummiter实例,并且调用其submitJobInternal()方法。提交作业后,waitForCompletion()每秒轮询作业的进度,如果发现自上次报告后有改变,便把进度报告到控制台。作业完成后,如果成功,就显示作业计数器;如果失败,则导致作业失败的错误被记录到控制台。

         JobSummiter所实现的作业提交过程如下:

         ① 向资源管理器请求爱一个新应用ID,用于MapReduce作业ID;

         ② 检查作业的输出说明;

         ③ 计算作业的输入分片;

         ④ 将运行作业所需要的资源(包括作业JAR文件、配置文件和计算所得的输入分片)复制到一个以作业ID命名的目录下的共享文件系统中;

         ⑤ 通过调用资源管理器的submitApplication()方法提交作业。

 

         2 作业的初始化

         资源管理器收到调用它的submitApplication()消息后,便将请求传递给YARN调度器。调度器分配一个容器,然后资源管理器在节点管理器的管理下载容器中启动application master的进程。

         MapReduce作业的application master是一个Java应用程序,它的主类是MRAppMaster。由于将接受来自任务的进度和完成报告,因此application master对作业的初始化是通过创建多个簿记对象以保持对作业进度的跟踪来完成的。

         接下来,它接受来自共享文件系统的、在客户端计算的输入分片。然后对每一个分片创建一个map任务对象以及由mapreduce.job.reduces属性确定的多个reduce任务对象。任务ID在此时分配。

         最后,在任何任务运行之前,application master调用setupJob()方法设置OutputCommitter。

 

         3 任务的分配

         application master为不适合作为uber运行的作业中的所有map任务和reduce任务向资源管理器请求容器。首先为Map任务发出请求,该请求优先级要高于reduce任务的请求,这是因为所有的map任务必须在reduce的排序阶段能够启动前完成。直到有5%的map任务已经完成时,为reduce任务的请求才会发出。

reduce任务能够在集群中运行,但是map任务的请求有着数据本地化局限。

 

         4 任务的执行

       一旦资源管理器的调度器为任务分配了一个特定节点上的容器,application master就通过与节点管理器通信来启动容器。该任务由主类为YarnChild的一个Java应用程序执行。在它运行任务之前,首先将任务需要的资源本地化,包括作业的配置、JAR文件和所有来自分布式缓存的文件。最后,运行map任务或reduce任务。

 

         5 进度和状态的更新

         一个作业和它的每个任务都有一个状态,包括:作业或任务的状态、map和reduce的进度作业计数器的值、状态消息或描述。

         任务在运行时,对其进度保持追踪。对map任务,任务进度是已处理输入所占的比例。对reduce任务,系统会估计已处理reduce输入的比例,整个过程分成三部分,与shuffle的三个阶段相对应(复制、排序、执行)。

         任务也有一组计数器,负责对任务运行过程中各个事件进行计数。当map任务或reduce任务运行时,子进程和父application master通过umbilical接口通信。每隔3秒钟,任务通过这个umbilical接口向自己的application master报告进度和状态,application master会形成一个作业的汇聚视图。

 

         6 作业的完成

         当application master收到最后一个任务已完成的通知后,便把作业的状态设置为“成功”。然后,在Job轮询状态时,便知道任务已成功完成,于是Job打印一条消息告知用户,然后从waitForCompletion()方法返回。Job的统计信息和计数值也是在这个时候输出到控制台。

         最后,作业完成时,application master和任务容器清理其工作状态,OutputCommitter的commitJob()方法会被调用。

 

转载于:https://www.cnblogs.com/fantastic-clouds/p/10438589.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值