BZOJ4300:绝世好题

Description

给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len)。

Input

输入文件共2行。
第一行包括一个整数n。
第二行包括n个整数,第i个整数表示ai。

Output

输出文件共一行。
包括一个整数,表示子序列bi的最长长度。

Sample Input

3
1 2 3

Sample Output

2

HINT

n<=100000,ai<=2*10^9

 

题解:

当要求以ai结尾的最长b串时,ai可以接在所有满足(j<i)与(ai and aj>0)的aj上。

假设aj and(1 shl x)>0,则所有满足(j<i)与(ai and(1 shl x)>0)的ai都可以接上。

则只需要用F[x]记录以满足ai and(1 shl x)>0的ai结尾的b串的最大长度,进行DP时,将ai转为二进制,接在对应的F[x],在转移到对应的F[x]上。

 

代码:

 1 uses math;
 2 var
 3   i,j,k,l,n,m,ans:longint;
 4   a:array[0..32]of longint;
 5   x,y:int64;
 6 begin
 7   readln(n);
 8   for i:=1 to n do
 9   begin
10     read(x); y:=x; k:=0; l:=1;
11     while x>0 do
12     begin
13       if x and 1=1 then k:=max(a[l]+1,k);
14       inc(l); x:=x div 2;
15     end;
16     ans:=max(ans,k); l:=1;
17     while y>0 do
18     begin
19       if y and 1=1 then a[l]:=max(a[l],k);
20       inc(l); y:=y div 2;
21     end;
22   end;
23   writeln(ans);
24 end.
View Code

转载于:https://www.cnblogs.com/GhostReach/p/6257045.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值