bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】

一道杜教筛的板子题。
两个都是积性函数,所以做法是一样的。以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\mu(i) \),然后很显然对于mu\( g(n)=1\),对于phi\( g(n)=n*(n+1)/2 \),然后可以这样转化一下:
\[ g(n)=\sum_{i=1}^{n}\sum_{d|n}\mu(d) \]
\[ =\sum_{d=1}^{n}\mu(d)\left \lfloor \frac{n}{d} \right \rfloor \]
\[ =\sum_{d=1}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor) \]
\[ s(n)=g(n)-\sum_{d=2}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor) \]
然后递归求解子问题即可。
时间复杂度据说是预处理三分之二的部分加上记忆化可以到\( O(n^{\frac{2}{3}}) \)。当然我并不会算……
p.s 因为是分块来做,所以没必要用map来记忆化。因为预处理了三分之二的部分,所以需要递归计算的x一定大于\( n^{\frac{2}{3}} \),这意味着\( \frac{n}{x} \)的数组取值在可接受的范围之内,事实上,这个数组往往非常小,并且因为分块,所以同一个下标上存的是同一个块的答案,不会冲突。(然而我跑的和map一样慢是怎么回事……

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=5000005,m=5000000;
int T,n,tot,q[N];
long long phi[N],mb[N],hphi[5005],hmb[5005];
bool v[N],vmb[5005],vphi[5005];
long long wkmb(long long x)
{
    if(x<=m) 
        return mb[x];
    if(vmb[n/x])
        return hmb[n/x];
    vmb[n/x]=1;
    long long re=1ll;
    for(long long i=2,la;i<=x;i=la+1)
    {
        la=x/(x/i);
        re-=(long long)(la-i+1)*wkmb(x/i);
    }
    return hmb[n/x]=re;
}
long long wkphi(long long x)
{
    if(x<=m) 
        return phi[x];
    if(vphi[n/x])
        return hphi[n/x];
    vphi[n/x]=1;
    long long re=(long long)x*(x+1)/2;
    for(long long i=2,la;i<=x;i=la+1)
    {
        la=x/(x/i);
        re-=(long long)(la-i+1)*wkphi(x/i);
    }
    return hphi[n/x]=re;
}
int main()
{
    phi[1]=mb[1]=1;
    for(int i=2;i<=m;i++)
    {
        if(!v[i])
        {
            q[++tot]=i;
            mb[i]=-1;
            phi[i]=i-1;
        }
        for(int j=1;j<=tot&&i*q[j]<=m;j++)
        {
            long long k=i*q[j];
            v[k]=1;
            if(i%q[j]==0)
            {
                mb[k]=0;
                phi[k]=phi[i]*q[j];
                break;
            }
            mb[k]=-mb[i];
            phi[k]=phi[i]*(q[j]-1);
        }
    }
    for(int i=1;i<=m;i++)
    {
        phi[i]+=phi[i-1];
        mb[i]+=mb[i-1];
    }
    scanf("%lld",&T);
    while(T--)
    {
        memset(vmb,0,sizeof(vmb));
        memset(vphi,0,sizeof(vphi));
        scanf("%lld",&n);
        printf("%lld %lld\n",wkphi(n),wkmb(n));
    }
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/8329320.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值