来看这一种判断素数(质数)的函数:
form math import sart
def is_prime(n):
if n==1:
return False
for i in range(2, int(sqrt(n) + 1)):
if n % i == 0:
return False
return True
看起来,这是一种比较优秀的方法了,因为通过sqrt()函数减少了开方级的计算量。
再来看:
def is_prime(number):
if number > 1:
if number == 2:
return True
if number % 2 == 0:
return False
for current in range(3, int(math.sqrt(number) + 1), 2):
if number % current == 0:
return False
return True
return False
咋一看,这一次的代码看起来更多。但是,计算量却又在原来的基础上又几乎减少一半。高明之处就在这一句:if number % 2 == 0:
,其实这一句就一部将2以及所有合数因子给排除掉了,所以在这一句range(3, int(math.sqrt(number) + 1), 2)
中,直接从3起步,步长为2.在range()函数产生的序列是[3,5,7,9,...]
,比原来由range(2, int(sqrt(n) + 1))
产生的[2,3,4,5,6,...]
少了合数的部分。