spark记录(18)SparkStreaming+kafka receiver和directed模式

一、receiver模式

1 、receiver模式原理图

2 receiver模式理解:

在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据。数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也可以修改。receiver task对接收过来的数据进行存储和备份,这个过程会有节点之间的数据传输。备份完成后去zookeeper中更新消费偏移量,然后向Driver中的receiver tracker汇报数据的位置。最后Driver根据数据本地化将task分发到不同节点上执行。

3 receiver模式中存在的问题

当Driver进程挂掉后,Driver下的Executor都会被杀掉,当更新完zookeeper消费偏移量的时候,Driver如果挂掉了,就会存在找不到数据的问题,相当于丢失数据。

4 如何解决这个问题?

开启WAL(write ahead log)预写日志机制,在接受过来数据备份到其他节点的时候,同时备份到HDFS上一份(我们需要将接收来的数据的持久化级别降级到MEMORY_AND_DISK),这样就能保证数据的安全性。不过,因为写HDFS比较消耗性能,要在备份完数据之后才能进行更新zookeeper以及汇报位置等,这样会增加job的执行时间,这样对于任务的执行提高了延迟度。

  • receiver模式代码(见代码)
/**
 * receiver 模式并行度是由blockInterval决定的
 * @author root
 *
 */
public class SparkStreamingOnKafkaReceiver {
 
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaReceiver")
                .setMaster("local[2]");
        //开启预写日志 WAL机制
        conf.set("spark.streaming.receiver.writeAheadLog.enable","true");
        
        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
          jsc.checkpoint("./receivedata");
        
        Map<String, Integer> topicConsumerConcurrency = new HashMap<String, Integer>();
        /**
         * 设置读取的topic和接受数据的线程数
         */
        topicConsumerConcurrency.put("t0404", 1);
        
        /**
         * 第一个参数是StreamingContext
         * 第二个参数是ZooKeeper集群信息(接受Kafka数据的时候会从Zookeeper中获得Offset等元数据信息)
         * 第三个参数是Consumer Group 消费者组
         * 第四个参数是消费的Topic以及并发读取Topic中Partition的线程数
         * 
         * 注意:
         * KafkaUtils.createStream 使用五个参数的方法,设置receiver的存储级别
         */
        JavaPairReceiverInputDStream<String,String> lines = KafkaUtils.createStream(
                jsc,
                "node3:2181,node4:2181,node5:2181",
                "MyFirstConsumerGroup", 
                topicConsumerConcurrency);
        
//        JavaPairReceiverInputDStream<String,String> lines = KafkaUtils.createStream(
//                jsc,
//                "node3:2181,node4:2181,node5:2181",
//                "MyFirstConsumerGroup", 
//                topicConsumerConcurrency/*,
//                StorageLevel.MEMORY_AND_DISK()*/);
        
        
        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<Tuple2<String,String>, String>() { 

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            public Iterable<String> call(Tuple2<String,String> tuple) throws Exception {
                return Arrays.asList(tuple._2.split("\t"));
            }
        });
        
          
        JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            public Tuple2<String, Integer> call(String word) throws Exception {
                return new Tuple2<String, Integer>(word, 1);
            }
        });
        
          
        JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { 
            //对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce)
            
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
        
         
        wordsCount.print(100);
        
        jsc.start();
        jsc.awaitTermination();
        jsc.close();
    }

}

 

  • receiver的并行度设置

receiver的并行度是由spark.streaming.blockInterval来决定的,默认为200ms,假设batchInterval为5s,那么每隔blockInterval就会产生一个block,这里就对应每批次产生RDD的partition,这样5秒产生的这个Dstream中的这个RDD的partition为25个,并行度就是25。如果想提高并行度可以减少blockInterval的数值,但是最好不要低于50ms。

 

 二、directed

1 Direct模式理解

SparkStreaming+kafka 的Driect模式就是将kafka看成存数据的一方,不是被动接收数据,而是主动去取数据。消费者偏移量也不是用zookeeper来管理,而是SparkStreaming内部对消费者偏移量自动来维护,默认消费偏移量是在内存中,当然如果设置了checkpoint目录,那么消费偏移量也会保存在checkpoint中。当然也可以实现用zookeeper来管理。

2 Direct模式并行度设置

Direct模式的并行度是由读取的kafka中topic的partition数决定的。

3 Direct模式代码

/**
 * 并行度:
 * 1、linesDStram里面封装到的是RDD, RDD里面有partition与读取topic的parititon数是一致的。
 * 2、从kafka中读来的数据封装一个DStram里面,可以对这个DStream重分区 reaprtitions(numpartition)
 * 
 * @author root
 *
 */
public class SparkStreamingOnKafkaDirected {

    public static void main(String[] args) {
        
        SparkConf conf = new SparkConf().setMaster("local").setAppName("SparkStreamingOnKafkaDirected");
//        conf.set("spark.streaming.backpressure.enabled", "false");
//        conf.set("spark.streaming.kafka.maxRatePerPartition    ", "100");
        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
        /**
         * 可以不设置checkpoint 不设置不保存offset,offset默认在内存中有一份,如果设置checkpoint在checkpoint也有一份offset, 一般要设置。
         */
        jsc.checkpoint("./checkpoint");
        Map<String, String> kafkaParameters = new HashMap<String, String>();
        kafkaParameters.put("metadata.broker.list", "node1:9092,node2:9092,node3:9092");
//        kafkaParameters.put("auto.offset.reset", "smallest");
        
        HashSet<String> topics = new HashSet<String>();
        topics.add("t0404");
        JavaPairInputDStream<String,String> lines = KafkaUtils.createDirectStream(jsc,
                String.class,  
                String.class,
                StringDecoder.class,
                StringDecoder.class,
                kafkaParameters,
                topics);
        
        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<Tuple2<String,String>, String>() { //如果是Scala,由于SAM转换,所以可以写成val words = lines.flatMap { line => line.split(" ")}
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            public Iterable<String> call(Tuple2<String,String> tuple) throws Exception {
                return Arrays.asList(tuple._2.split("\t"));
            }
        });
        
        JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            public Tuple2<String, Integer> call(String word) throws Exception {
                return new Tuple2<String, Integer>(word, 1);
            }
        });
        
        
        JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { //对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce)
            
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
        
        
        wordsCount.print();
        jsc.start();
        jsc.awaitTermination();
        jsc.close();
    }

}

 

三、相关配置

预写日志:

spark.streaming.receiver.writeAheadLog.enable  默认false没有开启

blockInterval:

spark.streaming.blockInterval  默认200ms

反压机制:

spark.streaming.backpressure.enabled  默认false

接收数据速率:

spark.streaming.receiver.maxRate  默认没有设置

总结:

转载于:https://www.cnblogs.com/kpsmile/p/10484541.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值