题目描述
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
输入输出格式
输入格式:
第一行有两个数M,N,表示技术人员数与顾客数。
接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
输出格式:
最小平均等待时间,答案精确到小数点后2位。
输入输出样例
说明
(2<=M<=9,1<=N<=60), (1<=T<=1000)
题解
- 明显这题要求平均时间最短,就等同于要求总时间最短
- 我们考虑一下构图方式:
- 把n台车每个拆成m个点,然后再建m个点表示工人,一共就是n*m+m个点(不包括s,t)
- 那么可以从起始点向(i-1)*m+j连一条费用为0的边,流量为1。(也就是按排哪台车给那个工人)
- 我们考虑工人j倒数修的倒数第k辆车为i,那么i对答案的贡献就为a[j,i]*k
- 那么对于工人i的第j个节点,则在该节点与每个汽车节点之间连上一条流量为1费用为time*j的边就好了
代码
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N=10005;
const int inf=0x3f3f3f3f;
int n,m,cnt,last[N],t,dis[N],f[N],d[N],ans,s,v[N],q[N],a[100][100];
struct edge{int from,to,c,w,next,op;}e[N*100];
queue<int> Q;
void insert(int u,int v,int x,int y)
{
e[++cnt].from=u; e[cnt].to=v; e[cnt].c=x; e[cnt].w=y; e[cnt].next=last[u]; last[u]=cnt; e[cnt].op=cnt+1;
e[++cnt].from=v; e[cnt].to=u; e[cnt].c=0; e[cnt].w=-y; e[cnt].next=last[v]; last[v]=cnt; e[cnt].op=cnt-1;
}
bool spfa()
{
for (int i=s;i<=t;i++)
{
dis[i]=inf;
f[i]=d[i]=0;
}
dis[s]=0; f[s]=1; Q.push(s);
while (!Q.empty())
{
int u=Q.front(); Q.pop();
for (int i=last[u];i;i=e[i].next)
if (e[i].c&&e[i].w+dis[u]<dis[e[i].to])
{
dis[e[i].to]=e[i].w+dis[u];
d[e[i].to]=i;
if (!f[e[i].to])
{
f[e[i].to]=1;
Q.push(e[i].to);
}
}
f[u]=0;
}
if (dis[t]<inf) return 1; else return 0;
}
void mcf()
{
int mn=inf,x=t;
while (d[x])
{
mn=min(mn,e[d[x]].c);
x=e[d[x]].from;
}
ans+=mn*dis[t];
x=t;
while (d[x])
{
e[d[x]].c-=mn;
e[e[d[x]].op].c+=mn;
x=e[d[x]].from;
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++)
scanf("%d",&a[j][i]);
s=0; t=n*m+m+1;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
insert(s,(i-1)*m+j,1,0);
for (int k=1;k<=m;k++) insert((i-1)*m+j,n*m+k,1,a[i][k]*j);
}
for (int i=1;i<=m;i++) insert(n*m+i,t,1,0);
while (spfa()) mcf();
printf("%.2lf",(double)ans/m);
return 0;
}
ZKW费用流模版
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define inf 0x7fffffff
#define N 10005
#define ll long long
using namespace std;
int n,m,s,t,ans,vis[N],a[100][100],last[N],cnt;
ll dis[N];
struct edge{int from,to,c,w,op,next;}e[N*100];
int dfs(int x,int maxf)
{
if (x==t||maxf==0) return maxf;
int ret=0;
vis[x]=1;
for (int i=last[x];i;i=e[i].next)
if (e[i].c&&dis[e[i].to]+e[i].w==dis[x]&&!vis[e[i].to])
{
int f=dfs(e[i].to,min(e[i].c,maxf-ret));
ans+=f*e[i].w;
e[i].c-=f;
e[e[i].op].c+=f;
ret+=f;
if (ret==maxf) break;
}
return ret;
}
bool change()
{
ll mn=inf;
for (int i=s;i<=t;i++)
if (vis[i])
for (int j=last[i];j;j=e[j].next)
if (!vis[e[j].to]&&e[j].c) mn=min(mn,-dis[i]+e[j].w+dis[e[j].to]);
if (mn==inf) return 0;
for (int i=s;i<=t;i++)
if (vis[i]) dis[i]+=mn;
return 1;
}
void zkw()
{
do{
for (int i=s;i<=t;i++) vis[i]=0;
while (dfs(s,inf)) for (int i=s;i<=t;i++) vis[i]=0;
}while (change());
}
void insert(int u,int v,int c,int w)
{
e[++cnt].from=u;e[cnt].to=v;e[cnt].c=c;e[cnt].w=w;e[cnt].op=cnt+1;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].from=v;e[cnt].to=u;e[cnt].c=0;e[cnt].w=-w;e[cnt].op=cnt-1;e[cnt].next=last[v];last[v]=cnt;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++)
scanf("%d",&a[j][i]);
s=0;t=n*m+m+1;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
insert(s,(i-1)*m+j,1,0);
for (int k=1;k<=m;k++)
insert((i-1)*m+j,n*m+k,1,a[i][k]*j);
}
for (int i=1;i<=m;i++)
insert(n*m+i,t,1,0);
zkw();
printf("%.2lf",(double)ans/m);
return 0;
}