CODEFORCES-1077c

Good Array

题目链接:https://vjudge.net/problem/CodeForces-1077C

题目大意:给你n个数组成的序列,如果从中删除一个数后,其余的n-1个数组成der序列满足其中一个数

等于其余数der和,求满足条件的数的位置

题目思路:n-1个数组成的序列,设这个和值为a n-1个数der和就是 2*a,也就是说除去删除der那个数剩下的

的和能被2整除,并且这n-1个数中存在值为a的数。也就是说我们需要先求的n个数的和,并且标记每一个数出现的次数

在遍历一遍每一个值,如果sum-a[i]能被2整除并且vis[(sum-a[i])/2]为真值,就记录这个位置i。代码如下:

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=2e5+10;
const int maxns=1e6+10;
int dp[6];
int vis[maxns];
int a[maxn];
int main()
{  
int n;
    cin>>n;
    long long sum=0;
    int maxx=-1;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        maxx=max(maxx,a[i]);
        vis[a[i]]++;
        sum+=a[i];
    }
    int cnt=0;
    int ans[maxn];
    for(int i=1;i<=n;i++)
    {
        if((sum-a[i])%2==0)
        {
            long long flag=(sum-a[i])/2;
            if(flag>maxx) continue;
            vis[a[i]]--;  //a[i]被删除自然要-1;
            if(vis[flag])
            {
              ans[++cnt]=i;        
              } 
              vis[a[i]]++; //恢复原序列
        }
    }
    cout<<cnt<<endl;
    for(int i=1;i<=cnt;i++) cout<<ans[i]<<(i==cnt?'\n':' ');
    return 0;
} 

 

转载于:https://www.cnblogs.com/tombraider-shadow/p/11219075.html

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值