ln函数怎么看奇偶性_判断奇偶性解析函数:f(x)=ln(x+根 – 手机爱问

本文探讨了三角函数的奇偶性,通过具体例子展示了如何利用三角公式变形来判断函数的奇偶性。首先,通过f(x)=-cosπx-1的例子证明其为偶函数;接着,分析f(x)=√2sin(2x-0.25π)的情况,发现f(x)+f(-x)和f(x)-f(-x)的值与x有关,因此该函数既不是奇函数也不是偶函数。总结了判断三角函数奇偶性的关键在于利用定义结合三角恒等式进行转换。
摘要由CSDN通过智能技术生成

2009-01-10

急急急三角函数奇偶性三角函数奇偶

f(x)=sin(πx-0。5π)-1=-sin(0。5π-πx)-1=-cosπx-1,f(-x)=-cos(-πx)-1==-cosπx-1,∵ f(-x)=f(x), ∴ 是偶函数。

f(x)=√2sin(2x-0。 25π),f(-x)=√2sin(-2x-0。25π),

∵ f(x)+f(-x)=√2[sin(2x-0。25π)+sin(-2x-0。25π)]

=2√2sin[(2x-0。25π)/2+(-2x-0。 25π)/2]cos[(2x-0。25π)/2-(-2x-0。25π)/2]=2√2sin(-π/4)cos(2x)=-2cos(2x)的取值与x有关,

同理,...全部

f(x)=sin(πx-0。5π)-1=-sin(0。5π-πx)-1=-cosπx-1,f(-x)=-cos(-πx)-1==-cosπx-1,∵ f(-x)=f(x), ∴ 是偶函数。

f(x)=√2sin(2x-0。

25π),f(-x)=√2sin(-2x-0。25π),

∵ f(x)+f(-x)=√2[sin(2x-0。25π)+sin(-2x-0。25π)]

=2√2sin[(2x-0。25π)/2+(-2x-0。

25π)/2]cos[(2x-0。25π)/2-(-2x-0。25π)/2]=2√2sin(-π/4)cos(2x)=-2cos(2x)的取值与x有关,

同理,f(x)-f(-x)=2sin(2x)的取值与x有关,

∴ f(x)+f(-x)=0即f(-x)=-f(x)对一切x∈R不恒成立,

f(x)-f(-x)=0即f(-x)=f(x)对一切x∈R不恒成立,y=f(x)既不是奇函数,也不是偶函数。

三角函数奇偶性的判断仍然是根据定义,但要结合三角公式进行变形。

。收起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值