CF1188B/E Count Pairs(数学)

数同余的个数显然是要把\(i,j\)分别放到\(\equiv\)的两边

$ (a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p $

左右两边乘上\((a_i-a_j)\)

得:\((a_i^2-a_j^2)(a_i^2+a_j^2)\equiv a_ik-a_jk \bmod p\Longrightarrow a_i^4-a_j^4\equiv a_ik-a_jk \bmod p\Longrightarrow a_i^4-a_ik\equiv a_j^4-a_jk \bmod p\)

转载于:https://www.cnblogs.com/y2823774827y/p/11145024.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值