数同余的个数显然是要把\(i,j\)分别放到\(\equiv\)的两边
$ (a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p $
左右两边乘上\((a_i-a_j)\)
得:\((a_i^2-a_j^2)(a_i^2+a_j^2)\equiv a_ik-a_jk \bmod p\Longrightarrow a_i^4-a_j^4\equiv a_ik-a_jk \bmod p\Longrightarrow a_i^4-a_ik\equiv a_j^4-a_jk \bmod p\)