★实验任务
顾名思义,互质序列是满足序列元素的 gcd 为 1 的序列。比如[1,2,3], [4,7,8],都是互质序列。[3,6,9]不是互质序列。现在并不要求你找出一个互质 序列,那样太简单了!真正的问题描述是:给定一个序列,删除其中一个元素使 得剩下元素的 gcd 最大,输出这个 gcd。
★数据输入
输入第一行为一个正整数 n。第二行为 n 个正整数 ai(1<=ai<=10^9)。 80%的数据 2<=n<=1000. 100%的数据 2<=n<=100000.
★数据输出
输出一个正整数,表示最大的 gcd。
输入示例 | 输出示例 |
---|---|
3 1 1 1 | 1 |
输入示例 | 输出示例 |
---|---|
5 2 2 2 3 2 | 2 |
输入示例 | 输出示例 |
---|---|
4 1 2 4 8 | 2 |
★Hint
最大公因数缩写是 gcd。gcd(a,b,c)=gcd(a,gcd(b,c)).
★思路
暴力算法对于小规模数据可以使用,但是如果出现大规模数据会超时。
优化算法:建立两个数组left与right。left[i]表示从左到右i个数字的gcd,同样道理right[i]表示从右到左前i个数字的gcd。
这样子后,求去掉第i个数字后整个序列的gcd,只需要找出它前面几个数的gcd,与它后面几个数字的gcd。这两个gcd再求一次gcd就是我们要找的gcd。
★Code
#include <stdio.h>
#include <stdlib.h>
int a[100000] = { 0 };
int left[100000] = { 0 };
int right[100000] = { 0 };
int getgcd(int x, int y)
{
if (!y) return x;
else return getgcd(y, x%y);
}
int main()
{
int n, i, j, ans = -1, gcd;
scanf("%d", &n);
for (i = 0; i < n; i++)
scanf("%d", &a[i]);
for (i = 0; i<n; i++) //从左至右求前i个数的gcd,并依次存于left数组中
{
if (i == 0)
gcd = a[0];
else
gcd = getgcd(a[i], left[i - 1]);
left[i] = gcd;
}
for (i = n - 1; i >= 0; i--) //从右至左求前i个数的gcd,并依次存于right数组中
{
if (i == n - 1)
gcd = a[n - 1];
else
gcd = getgcd(a[i], right[i + 1]);
right[i] = gcd;
}
for (i = 0; i<n; i++) //依次讨论去掉第i个数时数组的最大gcd
{
if (i == 0)
gcd = right[1];
else if (i == n - 1)
gcd = left[n - 2];
else
gcd = getgcd(left[i - 1], right[i + 1]); //根据题目中提示gcd(a,b,c)=gcd(a,gcd(b,c))
if (gcd>ans)
ans = gcd;
}
printf("%d\n", ans);
return 0;
}