任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757
A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6621 Accepted Submission(s): 4071
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
Sample Output
45 104
Author
linle
题意概括:
按照题目所给的递推式求解 f(N);
解题思路:
根据递推式构造矩阵乘法;
然后矩阵快速幂解决矩阵乘法;
Ac code:
#include <cstdio> #include <iostream> #include <algorithm> #include <cstring> #define LL long long using namespace std; const int N = 11; int Mod, K; struct mat { int m[15][15]; }base, tmp, ans; mat muti(mat a, mat b) { mat res; memset(res.m, 0, sizeof(res.m)); for(int i = 1; i <= N; i++) for(int j = 1; j <= N; j++){ if(a.m[i][j]){ for(int k = 1; k <= N; k++){ res.m[i][k] = (res.m[i][k] + a.m[i][j] * b.m[j][k])%Mod; } } } return res; } mat qpow(mat a, int n) { mat res; memset(res.m, 0, sizeof(res.m)); for(int i = 1; i <= N; i++) res.m[i][i] = 1LL; while(n){ if(n&1){ res = muti(res, a); } a = muti(a, a); n>>=1; } return res; } int main() { while(~scanf("%d%d", &K, &Mod)){ memset(base.m, 0, sizeof(base.m)); for(int i = 0; i < 10; i++){ base.m[i][1] = i; } memset(tmp.m, 0, sizeof(tmp.m)); for(int i = 1; i <= 10; i++){ tmp.m[i][i+1] = 1; } for(int i = 10; i >= 1; i--){ scanf("%d", &tmp.m[10][i]); //构造递推关系矩阵 base.m[10][1] += ((LL)(i-1)*tmp.m[10][i])%Mod; } //see see // for(int i = 1; i <= 10; i++){ // for(int j = 1; j <= 10; j++){ // printf("%d ", tmp.m[i][j]); // } // puts(""); // } if(K <= 10){ printf("%d\n", base.m[K][1]); } else{ tmp = qpow(tmp, K-10); ans = muti(tmp, base); // //see see // for(int i = 1; i <= 10; i++){ // for(int j = 1; j <= 10; j++){ // printf("%d ", tmp.m[i][j]); // } // puts(""); // } printf("%d\n", ans.m[10][1]%Mod); } } return 0; }