Tensorflow_MNIST

MNIST dataset

1.Summarization
1433065-20180818182803673-652323862.png
2.loading

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Run_IN_A_CO_NOTEBOOK

the Result

1433065-20180818193822681-1071564818.png

Cloud TPU

Tensor Processing Unit

It is a ASIC specially designed for machine learning and TensorFlow customization (integrated circuit chip technology). The TPU is a programmable AI accelerator that provides high throughput, low precision calculations (such as 8 bits), oriented to use or run models rather than training models.

它是一个专门为机器学习和TensorFlow定制的ASIC(集成电路芯片技术)。TPU是一个可编程的人工智能加速器,提供高吞吐量的低精度计算(如8位),面向使用或运行模型而不是训练模型。
1433065-20180827120410164-1357162701.png

The Unknown Word

The First ColumnThe second Column
domain-specific handware领域定制硬件
TPUTensor Processing Unit张量处理单元
Tensor张量,代表了N维数组
Flow流,代表了基于数据流图的计算
customization定制
low precision低精度
precision[pri'sigen]精度

转载于:https://www.cnblogs.com/hugeng007/p/9498541.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值