云扬大叔

学习是一种信仰!

TensorFlow入门教程(1)

TensorFlow的基本概念 一、TensorFlow的结构 如上图,TensorFlow由Tensor、operation、session、variable等组成,其中Tensor表示数据,operation表示操作(例如加减乘除),所有的流程图Graph都由Session来启动,va...

2019-04-17 20:50:46

阅读数 17

评论数 0

什么是凸函数和凹函数

2018-12-01 10:20:52

阅读数 1710

评论数 0

TensorFlow学习(11)——卷积神经网络

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # ====================一、载入训练数据============================== mni...

2018-10-31 14:19:21

阅读数 126

评论数 0

TensorFlow学习(10)——tensorboard scalar的使用

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 第一步、载入训练数据 mnist = input_data.read_data_sets(train_dir=&a...

2018-10-30 12:00:05

阅读数 241

评论数 0

TensorFlow学习(9)——tensorboard name_scope的使用

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 第一步、载入训练数据 mnist = input_data.read_data_sets(train_dir=&a...

2018-10-30 11:59:02

阅读数 81

评论数 0

TensorFlow学习(8)——Dropout的使用

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 第一步、载入训练数据 mnist = input_data.read_data_sets(train_dir=&a...

2018-10-30 11:57:49

阅读数 500

评论数 0

TensorFlow学习(7)——增加隐藏层优化mnist手写识别

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 第一步、载入训练数据 mnist = input_data.read_data_sets(train_dir=&a...

2018-10-30 11:55:38

阅读数 178

评论数 0

TensorFlow学习(6)——简单的mnist手写识别

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 第一步、载入训练数据 mnist = input_data.read_data_sets(train_dir=&a...

2018-10-30 11:54:38

阅读数 37

评论数 0

TensorFlow学习(5)——线性回归

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # =======================第一步、样本======================================...

2018-10-30 11:53:17

阅读数 86

评论数 0

TensorFlow学习(4)——TensorFlow的简单使用

import tensorflow as tf import numpy as np # 在这个例子中,我们的目标就是要找到合适的b和k,使得该线性模型能够把上面的样本给表示出来 # 第一、使用Numpy生成一百个随机点,这就是样本 x_data = np.random.r...

2018-10-30 11:51:21

阅读数 46

评论数 0

TensorFlow学习(3)——Fetch和Feed的使用

import tensorflow as tf # ===========Fetch============ input1 = tf.constant(3.0) input2 = tf.constant(2.0) input3 = tf.constant(5.0) add = t...

2018-10-30 11:49:45

阅读数 60

评论数 0

TensorFlow学习(2)——变量的使用

import tensorflow as tf # 定义一个变量 x = tf.Variable([1,2]) # 定义一个常量 a = tf.constant([3,3]) # 定义一个减法的op sub = tf.subtract(x,a) # 定义一个加法op add =...

2018-10-30 11:48:00

阅读数 27

评论数 0

TensorFlow学习(1)——创建图和启动图

import tensorflow as tf # 创建一个一行两列的常量op(向量) m1 = tf.constant([[3, 3]]) # 创建两行一列的矩阵op m2 = tf.constant([[2], [3]]) # 创建一个矩阵乘法的op product = tf....

2018-10-30 11:47:13

阅读数 94

评论数 0

TensorFlow常用优化器性能对比,以及各自优缺点

首先说明,本文不深入研究优化器的内部数学原理,只给出最终的结论。 性能对比 TensorFlow中提供了如下的对的优化器: tf.train.Optimizer tf.train.GradientDescentOptimizer tf.train.AdadeltaOptimizer tf.trai...

2018-10-26 16:29:51

阅读数 681

评论数 0

防止过拟合的方法

防止过拟合的方法: 增加数据集 出现过拟合的情况大部分是因为数据量过少,然而神经网络太过于复杂,所以增加数据集是十分有利于防止过拟合的。 正则化方法C=C0+λ2n∑ww2C=C_0 +\frac{ \lambda }{2n} \sum_{w}w^2C=C0​+2nλ​∑w​w2: C...

2018-10-25 16:22:54

阅读数 37

评论数 0

二次代价函数、交叉熵代价函数、对数似然代价函数的应用场景

二次代价函数的局限性 首先来说一下二次代价函数的局限性,看下面这张图: 假设现在使用的激活函数是sigmoid,并且代价函数是二次代价函数,我们收敛得目标是1,那么A点的梯度比较大,B点由于离目标比较近梯度小,所以是合理的;但是如果我们的收敛目标是0,那么A点离目标比较近,所以梯度应该要小于B点...

2018-10-25 11:43:40

阅读数 640

评论数 0

机器学习中权值W和偏导b与激活函数的关系

在机器学习中,我们经常会用到线性回归:y = Wx+b 我们也会用到损失函数,损失函数的公式如下图: 通过观察上面的式子我们发现,激活函数 σ\sigmaσ 包含着线性函数 Wx+b,这个时候损失函数就和权值W和偏置值b联系起来了。 接着我们队损失函数的W和b分别进行求导: 就像图中所说的,W...

2018-10-25 10:58:24

阅读数 439

评论数 1

TensorFlow定义隐藏层的方法

最近在学习TensorFlow,跟着教程敲了很多代码,但是也只是仅仅跟着敲,虽然也写过简单的隐藏层,但是真正要自己敲一个隐藏层还是感觉一脸懵逼,于是就有了这篇简短的博客。 初学者在写隐藏层的时候通常会遇到以下两个疑问: 不知道如何设置张量的维度 不知道该选什么激活函数 设置隐藏层维...

2018-10-24 17:05:32

阅读数 812

评论数 0

TensorFlow中random_normal和truncated_normal的区别

区别如下: tf.random_normal() 正太分布随机数,均值mean,标准差stddev tf.truncated_normal() 截断正态分布随机数,均值mean,标准差stddev,不过只保留[mean-2stddev,mean+2stddev]范围内的随机数 那...

2018-10-24 14:52:54

阅读数 283

评论数 0

Anaconda无法找到.jupyter文件的解决办法

安装Anaconda后我们打开主目录一般会看到全部文件,如下: 在这里不小心你可能会删掉一些文件,那非常不安全,所以我们要更改一下打开目录。 配置路目录一般在C:/用户/用户名/.jupyter/下,但是我怎么都找不到,所以这里还有一些坑。 那么要如何解决呢?其实很简单,但是网上有很多错误的教程...

2018-10-21 14:01:51

阅读数 957

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭