[BJWC2008]王之财宝

嘟嘟嘟

如果没有限制,而且必须选\(m\)件的话,就是隔板法\(C_{n + m - 1} ^ {m - 1}\)了。现在要选至多\(m\)件,那么就相当于新增一个板儿,分出的新的盒子表示“多出来的”,也就是说前\(m\)个盒子是选出来的宝具,这样就能满足至多\(m\)个的限制了,即\(C_{n + m} ^ {m}\)
从公式这一角度来说,就是\(\sum _ {i = 0} ^ {n} C_ {i + m - 1} ^ {m - 1} = C_{n + m} ^ {m}\),至于证明,在我的另一篇博客上有,题解:bzoj4403 序列统计

现在我们加上了\(T\)这个限制。我一直在想,\(T\)这么小,显然可以\(2 ^ T\)暴力枚举,但那又有啥用咧?
后来某大佬的题解告诉我,你怎么就想不到容斥啊?
好像有道理,答案等于至少0个神器超过限制的方案数 - 至少1个神器超过限制方案数 + 至少3个超过限制 - ……而对于每一个方案数,我们先强制让这些神器选\(B_i + 1\)个,然后剩下的随便选,就是\(C_{n + m - \sum(B_i + 1)} ^ {m - \sum (B_i + 1)} = C_{n + m - \sum(B_i + 1)} ^ {n}\)

最后因为模数小,上lucas。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<assert.h>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e6 + 5;
In ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
In void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
  freopen(".in", "r", stdin);
  freopen(".out", "w", stdout);
#endif
}

int n, T, m, mod, b[20];

ll fac[maxn], inv[maxn];
In ll inc(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;}
In ll C(int n, int m) 
{
  if(m > n) return 0;
  return fac[n] * inv[n - m] % mod * inv[m] % mod;
}
In ll lucas(int n, int m)
{
  ll ret = 1;
  for(; m; n /= mod, m /= mod)
    ret = ret * C(n % mod, m % mod) % mod;
  return ret;
}
In ll quickpow(ll a, ll b)
{
  ll ret = 1;
  for(; b; b >>= 1, a = a * a % mod)
    if(b & 1) ret = ret * a % mod;
  return ret;
}

In void init()
{
  fac[0] = inv[0] = 1;
  for(int i = 1; i < mod; ++i) fac[i] = fac[i - 1] * i % mod;
  inv[mod - 1] = quickpow(fac[mod - 1], mod - 2);
  for(int i = mod - 2; i; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
}

int main()
{
  //MYFILE();
  n = read(), T = read(), m = read(), mod = read();
  for(int i = 1; i <= T; ++i) b[i] = read();
  init();
  ll ans = 0;
  for(int i = 0; i < (1 << T); ++i)
    {
      int cnt = 0, tp = m;
      for(int j = 1; j <= T; ++j)
        if((i >> (j - 1)) & 1) ++cnt, tp -= b[j] + 1;
      ans = inc(ans, (cnt & 1) ? mod - lucas(n + tp, n) : lucas(n + tp, n));
    }
  write(ans), enter;
  return 0;
}

转载于:https://www.cnblogs.com/mrclr/p/10933939.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值