洛谷-P1107 [BJWC2008]雷涛的小猫

本文讲述了雷涛同学的小猫如何利用动态规划策略在北大柿子树间跳跃觅食的故事,展示了如何通过编程解决小猫从阳台到地面吃最多柿子的问题,以及两次尝试的代码优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的)。在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了。

可是有一天,雷涛下课回到寝室,却发现小猫不见了!经过一番寻找,才发现她正趴在阳台上对窗外的柿子树发呆…

在北京大学的校园里,有许多柿子树,在雷涛所在的宿舍楼前,就有 N 棵。并且这 N 棵柿子树每棵的高度都是H。冬天的寒冷渐渐笼罩了大地,树上的叶子渐渐掉光了,只剩下一个个黄澄澄的柿子,看着非常喜人。而雷涛的小猫恰好非常的爱吃柿子,看着窗外树上的柿子,她十分眼馋,于是决定利用自己敏捷的跳跃能力跳到树上去吃柿子。

小猫可以从宿舍的阳台上跳到窗外任意一棵柿子树的树顶。之后,她每次都可以在当前位置沿着当前所在的柿子树向下跳 1
单位距离。当然,小猫的能力远不止如此,她还可以在树之间跳跃。每次她都可以从当前这棵树跳到另外的任意一棵,在这个过程中,她的高度会下降
Delta 单位距离。每个时刻,只要她所在的位置有柿子,她就可以吃掉。整个“吃柿子行动”一直到小猫落到地面上为止。

雷涛调查了所有柿子树上柿子的生长情况。他很想知道,小猫从阳台出发,最多能吃到多少柿子?他知道写一个程序可以很容易的解决这个问题,但是他现在懒于写任何代码。于是,现在你的任务就是帮助雷涛写一个这样的程序。

原题链接
真的很激动,之前做题都会卡住然后看题解后才能懂,这个题是我第一个自己做出来的动态规划题,现在才能做出来好像有点菜。。。,那个标签上写的是贪心,我看了一会题,一头雾水,这怎么贪心呀,所以就试着用dp来做,没想到居然过了。刷题果然没错
第一次,我用了一个三重循环,第三重是从第i个树上跳到另外一个树得到的最多的柿子数。然后30分超时
代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=4005;
int dp[N][N];
int main()
{
    ios::sync_with_stdio(false);
    int n,h,d;
    memset(dp,0,sizeof(dp));
    cin>>n>>h>>d;
    int t,x;
    for(int i=1;i<=n;i++){
        cin>>t;
        for(int j=1;j<=t;j++){
            cin>>x;
            dp[i][x]++;
        }
    }
    for(int j=h;j>=1;j--)
        for(int i=1;i<=n;i++){
            int temp = dp[i][j];
            for(int k=1;k<=n;k++){
                if(i!=k)
                    dp[i][j] = max(dp[i][j+1],dp[k][j+d]);
            }
            dp[i][j]+=temp;
        }
        int ans=0;
        for(int i=1;i<=n;i++){
            ans = max(ans,dp[i][1]);
        }
        cout<<ans;
    return 0;
}

虽然超时了,但是坚信了dp的正确性
所以我利用一个数组来存储高度j时最多柿子数,变成了双重循环,就过了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=4005;
int dp[N][N];
int a[N];
int main()
{
    ios::sync_with_stdio(false);
    int n,h,d;
    memset(dp,0,sizeof(dp));
    cin>>n>>h>>d;
    int t,x;
    for(int i=1;i<=n;i++){
        cin>>t;
        for(int j=1;j<=t;j++){
            cin>>x;
            dp[i][x]++;
        }
    }
    for(int j=h;j>=1;j--)
        for(int i=1;i<=n;i++){
            dp[i][j] = max(dp[i][j+1],a[j+d])+dp[i][j];
            a[j] = max(a[j],dp[i][j]);
        }
        int ans=0;
        for(int i=1;i<=n;i++){
            ans = max(ans,dp[i][1]);
        }
        cout<<ans;
    return 0;
}
### BJWC2018 最长上升子序列问题解析 对于BJWC2018最长上升子序列问题,目标是在给定的一个长度为n的随机排列中找到其最长上升子序列(LIS)的期望长度,并输出该值模998244353的结果[^2]。 #### 动态规划方法求解LIS 一种经典的方法是通过动态规划(DP)来解决这个问题。设`dp[i]`表示以第i个元素结尾的最大升序子序列的长度,则状态转移方程可以定义如下: 如果存在某个位置j<i使得a[j]<a[i], 则有 `dp[i]=max(dp[i], dp[j]+1)`. 初始化时,所有的`dp[i]`都设置为1,因为最短的情况就是一个单独的数字构成的序列。最终的答案将是所有可能的`dp[]`中的最大值。 然而,在本题的情况下,由于需要计算的是期望而不是确切的最大长度,因此还需要引入概率论的知识来进行调整。 ```cpp const long long MOD = 998244353; vector<long long> lis(vector<int>& nums){ vector<long long> res(nums.size(), 1); for (int i=1; i<nums.size(); ++i){ for(int j=0;j<i;++j){ if(nums[j]<nums[i]){ res[i]= max(res[i]%MOD,(res[j]+1)%MOD ); } } } return res; } ``` 这段代码实现了上述提到的状态转移逻辑,但是它并没有直接解决问题的要求——即求解期望值。为了得到正确的答案,还需进一步处理这些中间结果并考虑如何将其转换成所需的期望形式。 实际上,此题目的精确解答涉及到组合数学以及复杂的计数技巧,超出了简单的DP框架所能覆盖的内容。具体实现通常依赖于预处理阶乘逆元等高级技术以便高效地完成大范围内数值的概率运算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值