opencl gauss filter优化(一)

Platform: LG G3, Adreno 330 ,img size 3264x2448


C code

neon

GPU

300

60

29

 单位:ms


1. 目前按如下行列分解的方式最快29ms,Horizontal kernel globalWorksize[1] = {height+256-height%256};Vertical kernel globalWorksize2[1] = {width+256-width%256};

localWorksize2[] = {64}; localWorksize2 手动设为64时最快。

Porfile的结果为:Horizontal kernel wait time 11ms,实际rum time 18ms.

这个wait time是什么呢?注释掉Horizontal kernel中的 vstore16(convert_uchar16(sum>>(ushort)8),0,pOutLine+j) ; wait time只有0.x ms.并且 localWorksize 越小wait time越长,1时达到200ms,1620ms. 难道是写内存等待时间,没有足够的ALU指令隐藏访存延时?写内存后进入下一个for循环,马上又读内存,所以没有ALU指令隐藏这个延时。然而Horizontal kernelprofile结果实际run time只有0.x ms,所有时间基本都是在wait.(更正:注释掉vstore16,sum的计算被优化掉了,0.x ms是读内存的时间)

 

__kernel void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
                            __global uchar* restrict  dest,  // Intermediate dest image
                                             const int imgWidth ,                // Image width
                                             const int imgHeight)
{
    const int y = get_global_id(0);
    if(y>=(imgHeight))
        return;
    const uchar m_nRightShiftNum = 8;
    const uchar Rounding = (1 << (m_nRightShiftNum - 1));
    const uchar  m_nFilter[11] = {1,4,8,16,32,134,32,16,8,4,1};

    const int s = 11;
    const int nStart = 5;
    const int nWidth = imgWidth;

    __global const uchar* pInLine = source + y*nWidth;
    __global uchar* pOutLine = dest + y*nWidth;
    int j;
    for(j = 0; j < nStart; j ++)
    {
        ushort sum = 0;

        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);
            k1 = k1<0 ? -k1 : k1;

            int k2 = (j + nStart - m );
            sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
        }
        sum += pInLine[j] * m_nFilter[s / 2];
        sum = (sum + Rounding) >> 8;
        pOutLine[j] = (uchar)clamp(sum,(ushort)0,(ushort)255);
    }

    for ( ; (j+16)<= (nWidth - nStart); j+=16)
    {        
#define GAUSSIAN_LINE_NEON(m) \
sum += ( convert_ushort16(vload16(0,pInLine+j-nStart+m))* m_nFilter[m] );

        ushort16 sum =  (convert_ushort16(vload16(0,pInLine+j-nStart)) * m_nFilter[0]);
        GAUSSIAN_LINE_NEON(1);
        GAUSSIAN_LINE_NEON(2);
        GAUSSIAN_LINE_NEON(3);
        GAUSSIAN_LINE_NEON(4);
        GAUSSIAN_LINE_NEON(5);
        GAUSSIAN_LINE_NEON(6);
        GAUSSIAN_LINE_NEON(7);
        GAUSSIAN_LINE_NEON(8);
        GAUSSIAN_LINE_NEON(9);
        GAUSSIAN_LINE_NEON(10);

        sum += (ushort)Rounding;
        vstore16(convert_uchar16(sum>>(ushort)8),0,pOutLine+j) ;
    }

    for( ; j < nWidth; j ++)
    {
        ushort sum = 0;

        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);

            int k2 = (j + nStart - m );
            k2 = k2 >= nWidth ? 2 * nWidth - 2 - k2 : k2;
            sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
        }
        sum += pInLine[j] * m_nFilter[s / 2];
        sum = (sum + Rounding) >> m_nRightShiftNum;
        pOutLine[j] =  (uchar)clamp(sum,(ushort)0,(ushort)255);
    }
}


__kernel void ImageGaussianFilterVertical( __global uchar* restrict source,   // Intermediate image processed by ImageGaussianFilterHorizontal()
                        __global uchar* restrict dest,  // Final destination image
                        const int imgWidth,
                                         const int imgHeight
                                    )
{
    const int x = get_global_id(0);
    if(x>=(imgWidth))
        return;
    const int x_offset = x;

    const int s = 11;
    const int nStart = s / 2;
    const int m_nRightShiftNum = 8;
    const int Rounding = (1 << (m_nRightShiftNum - 1));
    const uchar  m_nFilter[11] = {1,4,8,16,32,134,32,16,8,4,1};

    int y;
//    mem_fence(CLK_LOCAL_MEM_FENCE);

    ushort lines[11];
    lines[nStart] = (ushort)( source[x_offset]  );
    for(y=1;y<=nStart;y++)
    {
        lines[nStart+y] = (ushort)( source[y*imgWidth+x_offset]  );
        lines[nStart-y] = lines[nStart+y];
    }

    for(y=0;y<(imgHeight-nStart-1);)
    {

        ushort sum = lines[nStart] * m_nFilter[nStart];
#define    GaussianTwoLines(m) \
    sum += ( (lines[m] + lines[s-1-m])*m_nFilter[m] );
        GaussianTwoLines(0)
        GaussianTwoLines(1)
        GaussianTwoLines(2)
        GaussianTwoLines(3)
        GaussianTwoLines(4)

        sum += (ushort)Rounding;
        dest[y*imgWidth+x_offset]  = (uchar)(sum>>(ushort)8);

        y++;
        for(int i = 0; i<s-1; i++) lines[i] = lines[i+1];
        
        lines[s-1] =  (ushort)( source[(y+nStart)*imgWidth+x_offset]  );
        
    }

    for(y=imgHeight-nStart-1;y<(imgHeight-1);)
    {
        ushort sum = lines[nStart] * m_nFilter[nStart];
        GaussianTwoLines(0)
        GaussianTwoLines(1)
        GaussianTwoLines(2)
        GaussianTwoLines(3)
        GaussianTwoLines(4)

        sum += (ushort)Rounding;
        dest[y*imgWidth+x_offset]  = (uchar)(sum>>(ushort)8);

        y++;
        for(int i = 0; i<s-1; i++) {
            lines[i] = lines[i+1];
        }
        lines[s-1] = lines[(imgHeight-y)*2-2] ; //
    }
    //last y=imgHeight-1
    ushort sum = lines[nStart] * m_nFilter[nStart];
    GaussianTwoLines(0)
    GaussianTwoLines(1)
    GaussianTwoLines(2)
    GaussianTwoLines(3)
    GaussianTwoLines(4)

    sum += (ushort)Rounding;
    dest[y*imgWidth+x_offset]  = (uchar)(sum>>(ushort)8);
}
kernel

 

2.Horizontal kernel改进,预先load 2x16个所需的pixel,计算时从中提取,这样每次循环只需读一次内存。需要26ms,wait time 8ms.

 

    ushort16 line0 =  convert_ushort16(vload16(0,pInLine+j-nStart));
    for ( ; (j+16)<= (nWidth - nStart); j+=16)
    {
        ushort16 line1 =  convert_ushort16(vload16(0,pInLine+j-nStart+16));

        ushort16 temp0;
        ushort16 temp1;
        temp0 = line0;
        temp1.s0123 = line0.sabcd;
        temp1.s45 = line0.sef;
        temp1.s67 = line1.s01;
        temp1.s89abcdef = line1.s23456789;
        ushort16 sum =  ( temp0 + temp1 ) * m_nFilter[0];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s0;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s9;
        sum += ( temp0 +  temp1 ) * m_nFilter[1];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s1;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s8;
        sum += ( temp0 +  temp1 ) * m_nFilter[2];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s2;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s7;
        sum += ( temp0 +  temp1 ) * m_nFilter[3];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s3;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s6;
        sum += ( temp0 +  temp1 ) * m_nFilter[4];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s4;
        sum += ( temp0 ) * m_nFilter[5];

        sum += (ushort)Rounding;
        line0 = line1;
        vstore16(convert_uchar16(sum>>(ushort)8),0,pOutLine+j) ;
    }
View Code

 

3.不计算,只读写内存测试。那么wait time 3.2 ms,run time 18.2 ms.说明Horizontal kernel 耗时的极限也需3.2ms. 但是只是注释掉vstore16,还保留了读和计算,反而wait time还只有0.x ms,这又是为何?是读几乎没有wait,3.2ms都是写的wait time? (更正:注释掉vstore16,sum的计算被优化掉了,0.x ms是读内存的时间)

a.再次测试,只有读wait time 0.xms ,只有写wait time 3.2ms.写比读的周期长.

for ( ; (j+16)<= (nWidth - nStart); j+=16)

{

ushort16 line1 = convert_ushort16(vload16(0,pInLine+j-nStart+16));

vstore16(0,0,pOutLine+j) ;

}

b.另外发现使用*((__global uint4*)(pOutLine+j)) = as_uint4(result);vstore16快,wait time 2.5ms.高通 80-N8592-1_L_OpenCL_Programming_Guide 中提到:

Vectorized load/store of a larger data type is more optimal than a small data type; e.g., a load of uint2* is more optimal than uchar8* .

For optimal SP to L2 bandwidth performance, align read access to a 32-bit address and write access to a 128-bit address.

c.原来写的内存没有对齐,使用*((__global uint4*)(pOutLine+j-5)) = as_uint4(result);wait time 1.9ms.

d.最后加上sum计算,采用的Horizontal kernel如下,localWorksize[] = {64};时时间最少,需要23ms,wait time 4.7ms , localWorksize = 128,wait 6ms.

并且使用__attribute__((work_group_size_hint(64,1,1))) ,耗时22ms.

 

__kernel __attribute__((work_group_size_hint(64,1,1)))   
void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
                        __global uchar* restrict  dest,  // Intermediate dest image
                                             const int imgWidth ,                // Image width
                                             const int imgHeight)
{
    const int y = get_global_id(0);
    if(y>=(imgHeight))
        return;
    const uchar m_nRightShiftNum = 8;
    const uchar Rounding = (1 << (m_nRightShiftNum - 1));
    const uchar  m_nFilter[11] = {1,4,8,16,32,134,32,16,8,4,1};

    const int s = 11;
    const int nStart = 5;
    const int nWidth = imgWidth;


    __global const uchar* pInLine = source + y*nWidth;
    __global uchar* pOutLine = dest + y*nWidth;

    int j;
    uchar temp[5];
    for(j = 0; j < nStart; j ++)
    {
        ushort sum = 0;

        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);
            k1 = k1<0 ? -k1 : k1;

            int k2 = (j + nStart - m );
            sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
        }
        sum += pInLine[j] * m_nFilter[s / 2];
        sum = (sum + Rounding) >> 8;
        temp[j] = (uchar)clamp(sum,(ushort)0,(ushort)255);
    }

    uchar16 result,pre_result;
    pre_result.sbcde = (uchar4)(temp[0],temp[1],temp[2],temp[3]);
    pre_result.sf = temp[4];

    ushort16 line0 =  convert_ushort16(vload16(0,pInLine+j-nStart));
    for ( ; (j+16)<= (nWidth - nStart); j+=16)
    {
        //prefetch(pInLine+j-nStart,32); //无变化
        ushort16 line1 =  convert_ushort16(vload16(0,pInLine+j-nStart+16));

        ushort16 temp0;
        ushort16 temp1;
        temp0 = line0;
        temp1.s0123 = line0.sabcd;
        temp1.s45 = line0.sef;
        temp1.s67 = line1.s01;
        temp1.s89abcdef = line1.s23456789;
        ushort16 sum =  ( temp0 + temp1 ) * m_nFilter[0];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s0;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s9;
        sum += ( temp0 +  temp1 ) * m_nFilter[1];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s1;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s8;
        sum += ( temp0 +  temp1 ) * m_nFilter[2];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s2;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s7;
        sum += ( temp0 +  temp1 ) * m_nFilter[3];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s3;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s6;
        sum += ( temp0 +  temp1 ) * m_nFilter[4];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s4;
        sum += ( temp0 ) * m_nFilter[5];

        sum += (ushort)Rounding;
        line0 = line1;

        result.s0123 = pre_result.sbcde;
        result.s4 = pre_result.sf;
        pre_result = convert_uchar16(sum>>(ushort)8) ;

        result.s5 = pre_result.s0;
        result.s67 = pre_result.s12;
        result.s89abcdef = pre_result.s3456789a;
        *( (__global uint4*)(pOutLine+j-5) ) =  (as_uint4)(result) ;
    }

    *( (__global uint*)(pOutLine+j-5) ) = (as_uint)(pre_result.sbcde);//last 5 bytes
    pOutLine[j-1] = pre_result.sf;

    for( ; j < nWidth; j ++)
    {
        ushort sum = 0;

        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);

            int k2 = (j + nStart - m );
            k2 = k2 >= nWidth ? 2 * nWidth - 2 - k2 : k2;
            sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
        }
        sum += pInLine[j] * m_nFilter[s / 2];
        sum = (sum + Rounding) >> m_nRightShiftNum;
        pOutLine[j] =  (uchar)clamp(sum,(ushort)0,(ushort)255);
    }
}
View Code

 

 

 

 

 

转载于:https://www.cnblogs.com/mlj318/p/5039348.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值